Nuprl Lemma : nil-append

[t:Top]. ([] t)


Proof




Definitions occuring in Statement :  append: as bs nil: [] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] uall: [x:A]. B[x]
Lemmas referenced :  list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[t:Top].  ([]  @  t  \msim{}  t)



Date html generated: 2016_05_15-PM-02_07_54
Last ObjectModification: 2015_12_27-AM-00_36_53

Theory : untyped!computation


Home Index