Nuprl Lemma : word-equiv_wf
∀[X:Type]. ∀[w1,w2:(X + X) List].  (word-equiv(X;w1;w2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
word-equiv: word-equiv(X;w1;w2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
word-equiv: word-equiv(X;w1;w2)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
or_wf, 
equal_wf, 
list_wf, 
exists_wf, 
transitive-closure_wf, 
word-rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
productEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[w1,w2:(X  +  X)  List].    (word-equiv(X;w1;w2)  \mmember{}  \mBbbP{})
Date html generated:
2017_01_19-PM-02_49_54
Last ObjectModification:
2017_01_13-PM-10_08_07
Theory : free!groups
Home
Index