Nuprl Lemma : word-equiv_wf

[X:Type]. ∀[w1,w2:(X X) List].  (word-equiv(X;w1;w2) ∈ ℙ)


Proof




Definitions occuring in Statement :  word-equiv: word-equiv(X;w1;w2) list: List uall: [x:A]. B[x] prop: member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T word-equiv: word-equiv(X;w1;w2) so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  or_wf equal_wf list_wf exists_wf transitive-closure_wf word-rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality productEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[w1,w2:(X  +  X)  List].    (word-equiv(X;w1;w2)  \mmember{}  \mBbbP{})



Date html generated: 2017_01_19-PM-02_49_54
Last ObjectModification: 2017_01_13-PM-10_08_07

Theory : free!groups


Home Index