Nuprl Lemma : word-rel-append2

X:Type. ∀w1,x,y:(X X) List.  (word-rel(X;x;y)  word-rel(X;w1 x;w1 y))


Proof




Definitions occuring in Statement :  word-rel: word-rel(X;w1;w2) append: as bs list: List all: x:A. B[x] implies:  Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q word-rel: word-rel(X;w1;w2) exists: x:A. B[x] member: t ∈ T and: P ∧ Q prop: cand: c∧ B uall: [x:A]. B[x] so_lambda: λ2x.t[x] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] so_apply: x[s] squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  exists_wf list_wf inverse-letters_wf equal_wf append_wf cons_wf nil_wf length_wf list_ind_cons_lemma list_ind_nil_lemma length-append word-rel_wf squash_wf true_wf iff_weakening_equal append_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality sqequalRule cut introduction extract_by_obid isectElimination unionEquality cumulativity because_Cache hypothesis lambdaEquality productEquality applyLambdaEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality universeEquality independent_pairFormation applyEquality imageElimination equalityTransitivity equalitySymmetry equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}X:Type.  \mforall{}w1,x,y:(X  +  X)  List.    (word-rel(X;x;y)  {}\mRightarrow{}  word-rel(X;w1  @  x;w1  @  y))



Date html generated: 2017_10_05-AM-00_44_39
Last ObjectModification: 2017_07_28-AM-09_18_39

Theory : free!groups


Home Index