Nuprl Lemma : free-word_wf
∀[X:Type]. (free-word(X) ∈ Type)
Proof
Definitions occuring in Statement :
free-word: free-word(X)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
free-word: free-word(X)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
Lemmas referenced :
quotient_wf,
list_wf,
word-equiv_wf,
word-equiv-equiv
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
unionEquality,
cumulativity,
hypothesisEquality,
because_Cache,
hypothesis,
lambdaEquality,
independent_isectElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[X:Type]. (free-word(X) \mmember{} Type)
Date html generated:
2017_01_19-PM-02_50_01
Last ObjectModification:
2017_01_14-PM-05_32_57
Theory : free!groups
Home
Index