Nuprl Lemma : free-word_wf

[X:Type]. (free-word(X) ∈ Type)


Proof




Definitions occuring in Statement :  free-word: free-word(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-word: free-word(X) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf list_wf word-equiv_wf word-equiv-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type].  (free-word(X)  \mmember{}  Type)



Date html generated: 2017_01_19-PM-02_50_01
Last ObjectModification: 2017_01_14-PM-05_32_57

Theory : free!groups


Home Index