Nuprl Lemma : free-append-0

[X:Type]. ∀[w:free-word(X)].  (w w ∈ free-word(X))


Proof




Definitions occuring in Statement :  free-0: 0 free-append: w' free-word: free-word(X) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-word: free-word(X) all: x:A. B[x] prop: implies:  Q cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a free-0: 0 free-append: w' quotient: x,y:A//B[x; y] and: P ∧ Q squash: T true: True subtype_rel: A ⊆B guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  list_wf word-equiv_wf word-equiv-equiv quotient-member-eq append_wf nil_wf append_back_nil equal-wf-base equal_wf squash_wf true_wf free-word_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution extract_by_obid isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis promote_hyp lambdaFormation equalityTransitivity equalitySymmetry because_Cache independent_pairFormation sqequalRule lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination pointwiseFunctionality pertypeElimination productElimination productEquality applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type].  \mforall{}[w:free-word(X)].    (w  +  0  =  w)



Date html generated: 2017_10_05-AM-00_44_47
Last ObjectModification: 2017_07_28-AM-09_18_41

Theory : free!groups


Home Index