Nuprl Lemma : free-append-assoc

[X:Type]. ∀[x,y,z:free-word(X)].  (x z ∈ free-word(X))


Proof




Definitions occuring in Statement :  free-append: w' free-word: free-word(X) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-append: w' top: Top
Lemmas referenced :  free-append_wf append_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis sqequalRule isect_memberEquality axiomEquality voidElimination voidEquality

Latex:
\mforall{}[X:Type].  \mforall{}[x,y,z:free-word(X)].    (x  +  y  +  z  =  x  +  y  +  z)



Date html generated: 2017_01_19-PM-02_50_18
Last ObjectModification: 2017_01_14-PM-07_34_27

Theory : free!groups


Home Index