Nuprl Lemma : free-append-assoc
∀[X:Type]. ∀[x,y,z:free-word(X)].  (x + y + z = x + y + z ∈ free-word(X))
Proof
Definitions occuring in Statement : 
free-append: w + w'
, 
free-word: free-word(X)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-append: w + w'
, 
top: Top
Lemmas referenced : 
free-append_wf, 
append_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[X:Type].  \mforall{}[x,y,z:free-word(X)].    (x  +  y  +  z  =  x  +  y  +  z)
Date html generated:
2017_01_19-PM-02_50_18
Last ObjectModification:
2017_01_14-PM-07_34_27
Theory : free!groups
Home
Index