Nuprl Lemma : free-0_wf

[X:Type]. (0 ∈ free-word(X))


Proof




Definitions occuring in Statement :  free-0: 0 free-word: free-word(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-0: 0 free-word: free-word(X) subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  nil_wf subtype_quotient list_wf word-equiv_wf word-equiv-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality hypothesis applyEquality lambdaEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type].  (0  \mmember{}  free-word(X))



Date html generated: 2017_01_19-PM-02_50_22
Last ObjectModification: 2017_01_14-PM-07_21_36

Theory : free!groups


Home Index