Nuprl Lemma : free-word-inv_wf

[X:Type]. ∀[w:free-word(X)].  (free-word-inv(w) ∈ free-word(X))


Proof




Definitions occuring in Statement :  free-word-inv: free-word-inv(w) free-word: free-word(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-word: free-word(X) all: x:A. B[x] prop: implies:  Q cand: c∧ B free-word-inv: free-word-inv(w) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a guard: {T} quotient: x,y:A//B[x; y] and: P ∧ Q squash: T true: True equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) word-equiv: word-equiv(X;w1;w2) exists: x:A. B[x] subtype_rel: A ⊆B word-rel: word-rel(X;w1;w2) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t iff: ⇐⇒ Q rev_implies:  Q inverse-letters: -b or: P ∨ Q
Lemmas referenced :  word-equiv-equiv list_wf word-equiv_wf map_wf equal_wf reverse_wf quotient-member-eq equal-wf-base member_wf squash_wf true_wf free-word_wf transitive-reflexive-closure-map word-rel_wf transitive-reflexive-closure_wf subtype_rel_self inverse-letters_wf append_wf cons_wf nil_wf length_wf list_ind_cons_lemma list_ind_nil_lemma length-append exists_wf and_wf iff_weakening_equal free-word-inv-append subtype_rel_list top_wf append_assoc_sq reverse-cons reverse_nil_lemma map_cons_lemma map_nil_lemma decide_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality unionEquality hypothesis promote_hyp lambdaFormation equalityTransitivity equalitySymmetry because_Cache independent_pairFormation sqequalRule lambdaEquality unionElimination inrEquality inlEquality dependent_functionElimination independent_functionElimination independent_isectElimination pointwiseFunctionality pertypeElimination productElimination productEquality applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed axiomEquality isect_memberEquality universeEquality dependent_pairFormation instantiate rename applyLambdaEquality voidElimination voidEquality dependent_set_memberEquality setElimination cumulativity hyp_replacement

Latex:
\mforall{}[X:Type].  \mforall{}[w:free-word(X)].    (free-word-inv(w)  \mmember{}  free-word(X))



Date html generated: 2019_10_31-AM-07_23_26
Last ObjectModification: 2018_08_21-PM-03_47_45

Theory : free!groups


Home Index