Nuprl Lemma : free-word-inv-append

[x:Top List]. ∀[y:Top].  (free-word-inv(x y) free-word-inv(y) free-word-inv(x))


Proof




Definitions occuring in Statement :  free-word-inv: free-word-inv(w) append: as bs list: List uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-word-inv: free-word-inv(w) top: Top
Lemmas referenced :  map_append_sq reverse_append_sq top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality sqequalAxiom because_Cache

Latex:
\mforall{}[x:Top  List].  \mforall{}[y:Top].    (free-word-inv(x  @  y)  \msim{}  free-word-inv(y)  @  free-word-inv(x))



Date html generated: 2017_01_19-PM-02_50_30
Last ObjectModification: 2017_01_15-AM-00_31_11

Theory : free!groups


Home Index