Nuprl Lemma : free-word-inv-append
∀[x:Top List]. ∀[y:Top].  (free-word-inv(x @ y) ~ free-word-inv(y) @ free-word-inv(x))
Proof
Definitions occuring in Statement : 
free-word-inv: free-word-inv(w)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-word-inv: free-word-inv(w)
, 
top: Top
Lemmas referenced : 
map_append_sq, 
reverse_append_sq, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[x:Top  List].  \mforall{}[y:Top].    (free-word-inv(x  @  y)  \msim{}  free-word-inv(y)  @  free-word-inv(x))
Date html generated:
2017_01_19-PM-02_50_30
Last ObjectModification:
2017_01_15-AM-00_31_11
Theory : free!groups
Home
Index