Nuprl Lemma : free-0-append
∀[X:Type]. ∀[w:free-word(X)].  (0 + w = w ∈ free-word(X))
Proof
Definitions occuring in Statement : 
free-0: 0
, 
free-append: w + w'
, 
free-word: free-word(X)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-append: w + w'
, 
append: as @ bs
, 
list_ind: list_ind, 
free-0: 0
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
free-word_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[w:free-word(X)].    (0  +  w  =  w)
Date html generated:
2017_01_19-PM-02_50_26
Last ObjectModification:
2017_01_14-PM-07_29_36
Theory : free!groups
Home
Index