Nuprl Lemma : free-0-append

[X:Type]. ∀[w:free-word(X)].  (0 w ∈ free-word(X))


Proof




Definitions occuring in Statement :  free-0: 0 free-append: w' free-word: free-word(X) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-append: w' append: as bs list_ind: list_ind free-0: 0 nil: [] it:
Lemmas referenced :  free-word_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity isect_memberEquality axiomEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[w:free-word(X)].    (0  +  w  =  w)



Date html generated: 2017_01_19-PM-02_50_26
Last ObjectModification: 2017_01_14-PM-07_29_36

Theory : free!groups


Home Index