Nuprl Lemma : free-word-inv-append2

[X:Type]. ∀[x:free-word(X)].  (x free-word-inv(x) 0 ∈ free-word(X))


Proof




Definitions occuring in Statement :  free-word-inv: free-word-inv(w) free-0: 0 free-append: w' free-word: free-word(X) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-word: free-word(X) all: x:A. B[x] prop: implies:  Q cand: c∧ B free-word-inv: free-word-inv(w) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a free-append: w' guard: {T} free-0: 0 nil: [] it: word-equiv: word-equiv(X;w1;w2) exists: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B quotient: x,y:A//B[x; y] squash: T true: True equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) so_lambda: λ2x.t[x] so_apply: x[s] transitive-reflexive-closure: R^* append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] or: P ∨ Q infix_ap: y word-rel: word-rel(X;w1;w2) inverse-letters: -b sq_type: SQType(T) false: False
Lemmas referenced :  word-equiv-equiv list_wf word-equiv_wf map_wf equal_wf reverse_wf quotient-member-eq append_wf nil_wf transitive-reflexive-closure_wf word-rel_wf subtype_rel_self equal-wf-base squash_wf true_wf free-word_wf last_induction list_ind_nil_lemma reverse_nil_lemma map_nil_lemma transitive-closure_wf transitive-reflexive-closure_transitivity cons_wf transitive-reflexive-closure-base-case reverse_append_sq subtype_rel_list top_wf map_append_sq reverse-cons map_cons_lemma list_ind_cons_lemma inverse-letters_wf length_wf length-append exists_wf subtype_base_sq int_subtype_base or_wf append_assoc_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality unionEquality hypothesis promote_hyp lambdaFormation equalityTransitivity equalitySymmetry because_Cache independent_pairFormation sqequalRule lambdaEquality unionElimination inrEquality inlEquality dependent_functionElimination independent_functionElimination independent_isectElimination dependent_pairFormation productEquality applyEquality instantiate universeEquality pointwiseFunctionality pertypeElimination productElimination imageElimination natural_numberEquality imageMemberEquality baseClosed isect_memberEquality axiomEquality voidElimination voidEquality inlFormation applyLambdaEquality cumulativity intEquality inrFormation

Latex:
\mforall{}[X:Type].  \mforall{}[x:free-word(X)].    (x  +  free-word-inv(x)  =  0)



Date html generated: 2019_10_31-AM-07_23_34
Last ObjectModification: 2018_08_21-PM-02_02_24

Theory : free!groups


Home Index