Nuprl Lemma : grp_hom_formation
∀[g,h:IGroup]. ∀[f:|g| ⟶ |h|].  IsMonHom{g,h}(f) supposing ∀a,b:|g|.  ((f (a * b)) = ((f a) * (f b)) ∈ |h|)
Proof
Definitions occuring in Statement : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
igrp: IGroup
, 
grp_op: *
, 
grp_car: |g|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
and: P ∧ Q
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
squash: ↓T
, 
prop: ℙ
, 
igrp: IGroup
, 
imon: IMonoid
, 
all: ∀x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
grp_car_wf, 
infix_ap_wf, 
grp_op_wf, 
iff_weakening_equal, 
all_wf, 
igrp_wf, 
grp_eq_op_l, 
grp_id_wf, 
mon_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
because_Cache, 
functionExtensionality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairEquality, 
functionEquality
Latex:
\mforall{}[g,h:IGroup].  \mforall{}[f:|g|  {}\mrightarrow{}  |h|].
    IsMonHom\{g,h\}(f)  supposing  \mforall{}a,b:|g|.    ((f  (a  *  b))  =  ((f  a)  *  (f  b)))
Date html generated:
2017_10_01-AM-08_14_01
Last ObjectModification:
2017_02_28-PM-01_58_17
Theory : groups_1
Home
Index