Nuprl Lemma : grp_hom_formation

[g,h:IGroup]. ∀[f:|g| ⟶ |h|].  IsMonHom{g,h}(f) supposing ∀a,b:|g|.  ((f (a b)) ((f a) (f b)) ∈ |h|)


Proof




Definitions occuring in Statement :  monoid_hom_p: IsMonHom{M1,M2}(f) igrp: IGroup grp_op: * grp_car: |g| uimplies: supposing a uall: [x:A]. B[x] infix_ap: y all: x:A. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) squash: T prop: igrp: IGroup imon: IMonoid all: x:A. B[x] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  equal_wf squash_wf true_wf grp_car_wf infix_ap_wf grp_op_wf iff_weakening_equal all_wf igrp_wf grp_eq_op_l grp_id_wf mon_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality setElimination rename dependent_functionElimination because_Cache functionExtensionality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination isect_memberEquality axiomEquality independent_pairEquality functionEquality

Latex:
\mforall{}[g,h:IGroup].  \mforall{}[f:|g|  {}\mrightarrow{}  |h|].
    IsMonHom\{g,h\}(f)  supposing  \mforall{}a,b:|g|.    ((f  (a  *  b))  =  ((f  a)  *  (f  b)))



Date html generated: 2017_10_01-AM-08_14_01
Last ObjectModification: 2017_02_28-PM-01_58_17

Theory : groups_1


Home Index