Nuprl Lemma : grp_eq_op_l

[g:IGroup]. ∀[a,b,c:|g|].  uiff(a b ∈ |g|;(c a) (c b) ∈ |g|)


Proof




Definitions occuring in Statement :  igrp: IGroup grp_op: * grp_car: |g| uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: igrp: IGroup imon: IMonoid infix_ap: y squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf grp_car_wf grp_op_wf igrp_wf squash_wf true_wf infix_ap_wf iff_weakening_equal grp_op_cancel_l
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality because_Cache applyEquality sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[g:IGroup].  \mforall{}[a,b,c:|g|].    uiff(a  =  b;(c  *  a)  =  (c  *  b))



Date html generated: 2017_10_01-AM-08_13_45
Last ObjectModification: 2017_02_28-PM-01_58_06

Theory : groups_1


Home Index