Nuprl Lemma : grp_eq_op_l
∀[g:IGroup]. ∀[a,b,c:|g|]. uiff(a = b ∈ |g|;(c * a) = (c * b) ∈ |g|)
Proof
Definitions occuring in Statement :
igrp: IGroup
,
grp_op: *
,
grp_car: |g|
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
prop: ℙ
,
igrp: IGroup
,
imon: IMonoid
,
infix_ap: x f y
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
equal_wf,
grp_car_wf,
grp_op_wf,
igrp_wf,
squash_wf,
true_wf,
infix_ap_wf,
iff_weakening_equal,
grp_op_cancel_l
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
hypothesisEquality,
because_Cache,
applyEquality,
sqequalRule,
productElimination,
independent_pairEquality,
isect_memberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
imageElimination,
universeEquality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}[g:IGroup]. \mforall{}[a,b,c:|g|]. uiff(a = b;(c * a) = (c * b))
Date html generated:
2017_10_01-AM-08_13_45
Last ObjectModification:
2017_02_28-PM-01_58_06
Theory : groups_1
Home
Index