Nuprl Lemma : fg-hom_wf

[X:Type]. ∀[G:Group{i}]. ∀[f:X ⟶ |G|]. ∀[w:free-word(X)].  (fg-hom(G;f;w) ∈ |G|)


Proof




Definitions occuring in Statement :  fg-hom: fg-hom(G;f;w) free-word: free-word(X) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type grp: Group{i} grp_car: |g|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T grp: Group{i} mon: Mon all: x:A. B[x] implies:  Q transitive-reflexive-closure: R^* or: P ∨ Q prop: fg-hom: fg-hom(G;f;w) squash: T so_lambda: λ2y.t[x; y] infix_ap: y true: True so_apply: x[s1;s2] guard: {T} rel_implies: R1 => R2 word-rel: word-rel(X;w1;w2) exists: x:A. B[x] and: P ∧ Q label: ...$L... t subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q inverse-letters: -b top: Top imon: IMonoid trans: Trans(T;x,y.E[x; y]) free-word: free-word(X) cand: c∧ B word-equiv: word-equiv(X;w1;w2) quotient: x,y:A//B[x; y] equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  free-word_wf grp_car_wf grp_wf transitive-reflexive-closure_wf list_wf word-rel_wf list_accum_wf squash_wf true_wf grp_id_wf grp_op_wf grp_inv_wf equal_wf transitive-closure-minimal member_wf and_wf append_wf cons_wf nil_wf subtype_rel_self iff_weakening_equal fg-hom-append list_accum_cons_lemma list_accum_nil_lemma grp_sig_wf monoid_p_wf inverse_wf grp_subtype_igrp mon_assoc grp_inverse mon_ident word-equiv_wf word-equiv-equiv equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache functionEquality setElimination rename universeEquality lambdaFormation unionElimination applyEquality unionEquality lambdaEquality imageElimination dependent_functionElimination independent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination dependent_set_memberEquality independent_pairFormation hyp_replacement applyLambdaEquality instantiate independent_isectElimination voidElimination voidEquality setEquality cumulativity promote_hyp pointwiseFunctionality pertypeElimination productEquality

Latex:
\mforall{}[X:Type].  \mforall{}[G:Group\{i\}].  \mforall{}[f:X  {}\mrightarrow{}  |G|].  \mforall{}[w:free-word(X)].    (fg-hom(G;f;w)  \mmember{}  |G|)



Date html generated: 2019_10_31-AM-07_23_53
Last ObjectModification: 2018_08_21-PM-02_02_49

Theory : free!groups


Home Index