Nuprl Lemma : fg-hom_wf
∀[X:Type]. ∀[G:Group{i}]. ∀[f:X ⟶ |G|]. ∀[w:free-word(X)].  (fg-hom(G;f;w) ∈ |G|)
Proof
Definitions occuring in Statement : 
fg-hom: fg-hom(G;f;w), 
free-word: free-word(X), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type, 
grp: Group{i}, 
grp_car: |g|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
grp: Group{i}, 
mon: Mon, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
transitive-reflexive-closure: R^*, 
or: P ∨ Q, 
prop: ℙ, 
fg-hom: fg-hom(G;f;w), 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
infix_ap: x f y, 
true: True, 
so_apply: x[s1;s2], 
guard: {T}, 
rel_implies: R1 => R2, 
word-rel: word-rel(X;w1;w2), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
label: ...$L... t, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
inverse-letters: a = -b, 
top: Top, 
imon: IMonoid, 
trans: Trans(T;x,y.E[x; y]), 
free-word: free-word(X), 
cand: A c∧ B, 
word-equiv: word-equiv(X;w1;w2), 
quotient: x,y:A//B[x; y], 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
free-word_wf, 
grp_car_wf, 
grp_wf, 
transitive-reflexive-closure_wf, 
list_wf, 
word-rel_wf, 
list_accum_wf, 
squash_wf, 
true_wf, 
grp_id_wf, 
grp_op_wf, 
grp_inv_wf, 
equal_wf, 
transitive-closure-minimal, 
member_wf, 
and_wf, 
append_wf, 
cons_wf, 
nil_wf, 
subtype_rel_self, 
iff_weakening_equal, 
fg-hom-append, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
grp_sig_wf, 
monoid_p_wf, 
inverse_wf, 
grp_subtype_igrp, 
mon_assoc, 
grp_inverse, 
mon_ident, 
word-equiv_wf, 
word-equiv-equiv, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
setElimination, 
rename, 
universeEquality, 
lambdaFormation, 
unionElimination, 
applyEquality, 
unionEquality, 
lambdaEquality, 
imageElimination, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
hyp_replacement, 
applyLambdaEquality, 
instantiate, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
setEquality, 
cumulativity, 
promote_hyp, 
pointwiseFunctionality, 
pertypeElimination, 
productEquality
Latex:
\mforall{}[X:Type].  \mforall{}[G:Group\{i\}].  \mforall{}[f:X  {}\mrightarrow{}  |G|].  \mforall{}[w:free-word(X)].    (fg-hom(G;f;w)  \mmember{}  |G|)
Date html generated:
2019_10_31-AM-07_23_53
Last ObjectModification:
2018_08_21-PM-02_02_49
Theory : free!groups
Home
Index