Nuprl Lemma : free-letter_wf
∀[X:Type]. ∀[x:X].  (free-letter(x) ∈ free-word(X))
Proof
Definitions occuring in Statement : 
free-letter: free-letter(x)
, 
free-word: free-word(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
free-word: free-word(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-letter: free-letter(x)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
cons_wf, 
nil_wf, 
subtype_quotient, 
list_wf, 
word-equiv_wf, 
word-equiv-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
inlEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[x:X].    (free-letter(x)  \mmember{}  free-word(X))
Date html generated:
2017_01_19-PM-02_50_55
Last ObjectModification:
2017_01_15-PM-01_15_50
Theory : free!groups
Home
Index