Nuprl Lemma : id-is-monoid_hom

[A:GrpSig]. x.x ∈ MonHom(A,A))


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x]
Definitions unfolded in proof :  fun_thru_2op: FunThru2op(A;B;opa;opb;f) and: P ∧ Q monoid_hom_p: IsMonHom{M1,M2}(f) prop: member: t ∈ T uall: [x:A]. B[x] monoid_hom: MonHom(M1,M2)
Lemmas referenced :  grp_id_wf grp_op_wf infix_ap_wf grp_sig_wf monoid_hom_p_wf grp_car_wf
Rules used in proof :  isect_memberEquality because_Cache independent_pairFormation equalitySymmetry equalityTransitivity axiomEquality applyEquality functionExtensionality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality lambdaEquality dependent_set_memberEquality cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[A:GrpSig].  (\mlambda{}x.x  \mmember{}  MonHom(A,A))



Date html generated: 2017_01_19-PM-02_30_35
Last ObjectModification: 2017_01_16-PM-01_02_27

Theory : groups_1


Home Index