Nuprl Lemma : id-is-monoid_hom
∀[A:GrpSig]. (λx.x ∈ MonHom(A,A))
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
and: P ∧ Q
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
monoid_hom: MonHom(M1,M2)
Lemmas referenced : 
grp_id_wf, 
grp_op_wf, 
infix_ap_wf, 
grp_sig_wf, 
monoid_hom_p_wf, 
grp_car_wf
Rules used in proof : 
isect_memberEquality, 
because_Cache, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
lambdaEquality, 
dependent_set_memberEquality, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[A:GrpSig].  (\mlambda{}x.x  \mmember{}  MonHom(A,A))
Date html generated:
2017_01_19-PM-02_30_35
Last ObjectModification:
2017_01_16-PM-01_02_27
Theory : groups_1
Home
Index