Nuprl Lemma : group-cat_wf
Group ∈ SmallCategory'
Proof
Definitions occuring in Statement : 
group-cat: Group
, 
small-category: SmallCategory
, 
member: t ∈ T
Definitions unfolded in proof : 
group-cat: Group
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
grp: Group{i}
, 
mon: Mon
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
imon: IMonoid
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3;s4;s5]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
monoid_hom: MonHom(M1,M2)
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced : 
mk-cat_wf, 
grp_wf, 
monoid_hom_wf, 
compose_wf_for_mon_hom, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
monoid_hom_properties, 
monoid_hom_p_wf, 
equal_wf, 
compose_wf, 
comp_assoc, 
iff_weakening_equal, 
infix_ap_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
cumulativity, 
universeEquality, 
setEquality, 
independent_isectElimination, 
lambdaFormation, 
equalitySymmetry, 
dependent_set_memberEquality, 
functionExtensionality, 
independent_pairFormation, 
imageElimination, 
functionEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
productElimination, 
independent_functionElimination, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality
Latex:
Group  \mmember{}  SmallCategory'
Date html generated:
2017_10_05-AM-00_50_33
Last ObjectModification:
2017_07_28-AM-09_20_28
Theory : small!categories
Home
Index