Nuprl Lemma : group-cat_wf

Group ∈ SmallCategory'


Proof




Definitions occuring in Statement :  group-cat: Group small-category: SmallCategory member: t ∈ T
Definitions unfolded in proof :  group-cat: Group member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] grp: Group{i} mon: Mon subtype_rel: A ⊆B so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) imon: IMonoid prop: so_apply: x[s1;s2;s3;s4;s5] uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B monoid_hom: MonHom(M1,M2) compose: g squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced :  mk-cat_wf grp_wf monoid_hom_wf compose_wf_for_mon_hom grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf monoid_hom_properties monoid_hom_p_wf equal_wf compose_wf comp_assoc iff_weakening_equal infix_ap_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality setElimination rename because_Cache hypothesisEquality applyEquality cumulativity universeEquality setEquality independent_isectElimination lambdaFormation equalitySymmetry dependent_set_memberEquality functionExtensionality independent_pairFormation imageElimination functionEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity productElimination independent_functionElimination isect_memberFormation isect_memberEquality axiomEquality

Latex:
Group  \mmember{}  SmallCategory'



Date html generated: 2017_10_05-AM-00_50_33
Last ObjectModification: 2017_07_28-AM-09_20_28

Theory : small!categories


Home Index