Nuprl Lemma : forget-group_wf
ForgetGroup ∈ Functor(Group;TypeCat)
Proof
Definitions occuring in Statement : 
forget-group: ForgetGroup
, 
group-cat: Group
, 
type-cat: TypeCat
, 
cat-functor: Functor(C1;C2)
, 
member: t ∈ T
Definitions unfolded in proof : 
forget-group: ForgetGroup
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
group-cat: Group
, 
mk-cat: mk-cat, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
, 
type-cat: TypeCat
, 
monoid_hom: MonHom(M1,M2)
, 
grp: Group{i}
, 
mon: Mon
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
group-cat_wf, 
type-cat_wf, 
grp_car_wf, 
mon_subtype_grp_sig, 
grp_subtype_mon, 
subtype_rel_transitivity, 
grp_wf, 
mon_wf, 
grp_sig_wf, 
cat-ob_wf, 
cat_arrow_triple_lemma, 
cat_ob_pair_lemma, 
cat-arrow_wf, 
cat_comp_tuple_lemma, 
compose_wf, 
monoid_hom_wf, 
cat_id_tuple_lemma, 
mk-functor_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
lambdaFormation, 
lambdaEquality
Latex:
ForgetGroup  \mmember{}  Functor(Group;TypeCat)
Date html generated:
2017_01_19-PM-02_57_14
Last ObjectModification:
2017_01_16-AM-00_45_26
Theory : small!categories
Home
Index