Nuprl Lemma : free-group-functor_wf

FreeGp ∈ Functor(TypeCat;Group)


Proof




Definitions occuring in Statement :  free-group-functor: FreeGp group-cat: Group type-cat: TypeCat cat-functor: Functor(C1;C2) member: t ∈ T
Definitions unfolded in proof :  free-group-functor: FreeGp member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] type-cat: TypeCat all: x:A. B[x] top: Top group-cat: Group mk-cat: mk-cat so_apply: x[s] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] uimplies: supposing a compose: g subtype_rel: A ⊆B free-group: free-group(X) grp_car: |g| pi1: fst(t) grp: Group{i} mon: Mon implies:  Q monoid_hom: MonHom(M1,M2) prop: free-letter: free-letter(x) fg-lift: fg-lift(G;f) fg-hom: fg-hom(G;f;w) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] grp_op: * pi2: snd(t) grp_inv: ~ grp_id: e infix_ap: y free-0: 0 free-append: w' free-word-inv: free-word-inv(w) append: as bs list_accum: list_accum cons: [a b] nil: [] it: list_ind: list_ind monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced :  mk-functor_wf type-cat_wf group-cat_wf cat_ob_pair_lemma free-group_wf cat-ob_wf cat_arrow_triple_lemma cat-arrow_wf cat_comp_tuple_lemma cat_id_tuple_lemma free-letter_wf free-word_wf grp_car_wf grp_wf fg-lift_wf monoid_hom_wf all_wf equal_wf free-group-generators compose_wf_for_mon_hom list_accum_cons_lemma list_accum_nil_lemma list_ind_nil_lemma reverse-cons reverse_nil_lemma free-append_wf free-0_wf monoid_hom_p_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality cumulativity hypothesisEquality because_Cache applyEquality independent_isectElimination lambdaFormation functionExtensionality functionEquality setElimination rename setEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality independent_pairFormation isect_memberFormation axiomEquality

Latex:
FreeGp  \mmember{}  Functor(TypeCat;Group)



Date html generated: 2017_10_05-AM-00_51_39
Last ObjectModification: 2017_07_28-AM-09_20_32

Theory : small!categories


Home Index