Nuprl Lemma : free-group-functor_wf
FreeGp ∈ Functor(TypeCat;Group)
Proof
Definitions occuring in Statement : 
free-group-functor: FreeGp
, 
group-cat: Group
, 
type-cat: TypeCat
, 
cat-functor: Functor(C1;C2)
, 
member: t ∈ T
Definitions unfolded in proof : 
free-group-functor: FreeGp
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
type-cat: TypeCat
, 
all: ∀x:A. B[x]
, 
top: Top
, 
group-cat: Group
, 
mk-cat: mk-cat, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
uimplies: b supposing a
, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
free-group: free-group(X)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp: Group{i}
, 
mon: Mon
, 
implies: P 
⇒ Q
, 
monoid_hom: MonHom(M1,M2)
, 
prop: ℙ
, 
free-letter: free-letter(x)
, 
fg-lift: fg-lift(G;f)
, 
fg-hom: fg-hom(G;f;w)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
grp_op: *
, 
pi2: snd(t)
, 
grp_inv: ~
, 
grp_id: e
, 
infix_ap: x f y
, 
free-0: 0
, 
free-append: w + w'
, 
free-word-inv: free-word-inv(w)
, 
append: as @ bs
, 
list_accum: list_accum, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
list_ind: list_ind, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
and: P ∧ Q
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced : 
mk-functor_wf, 
type-cat_wf, 
group-cat_wf, 
cat_ob_pair_lemma, 
free-group_wf, 
cat-ob_wf, 
cat_arrow_triple_lemma, 
cat-arrow_wf, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma, 
free-letter_wf, 
free-word_wf, 
grp_car_wf, 
grp_wf, 
fg-lift_wf, 
monoid_hom_wf, 
all_wf, 
equal_wf, 
free-group-generators, 
compose_wf_for_mon_hom, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
list_ind_nil_lemma, 
reverse-cons, 
reverse_nil_lemma, 
free-append_wf, 
free-0_wf, 
monoid_hom_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
lambdaFormation, 
functionExtensionality, 
functionEquality, 
setElimination, 
rename, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
isect_memberFormation, 
axiomEquality
Latex:
FreeGp  \mmember{}  Functor(TypeCat;Group)
Date html generated:
2017_10_05-AM-00_51_39
Last ObjectModification:
2017_07_28-AM-09_20_32
Theory : small!categories
Home
Index