Nuprl Lemma : free-group-generators
∀[X:Type]
  ∀G:Group{i}
    ∀[f,g:MonHom(free-group(X),G)].
      f = g ∈ MonHom(free-group(X),G) supposing ∀x:X. ((f free-letter(x)) = (g free-letter(x)) ∈ |G|)
Proof
Definitions occuring in Statement : 
free-letter: free-letter(x)
, 
free-group: free-group(X)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
, 
monoid_hom: MonHom(M1,M2)
, 
grp: Group{i}
, 
grp_car: |g|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
grp: Group{i}
, 
mon: Mon
, 
monoid_hom: MonHom(M1,M2)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
free-word: free-word(X)
, 
quotient: x,y:A//B[x; y]
, 
grp_car: |g|
, 
pi1: fst(t)
, 
free-group: free-group(X)
, 
guard: {T}
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
word-equiv: word-equiv(X;w1;w2)
, 
exists: ∃x:A. B[x]
, 
transitive-reflexive-closure: R^*
, 
or: P ∨ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
trans: Trans(T;x,y.E[x; y])
, 
word-rel: word-rel(X;w1;w2)
, 
free-append: w + w'
, 
grp_inv: ~
, 
pi2: snd(t)
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
grp_op: *
, 
grp_id: e
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
listp: A List+
, 
imon: IMonoid
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
free-word-inv: free-word-inv(w)
, 
inverse-letters: a = -b
, 
free-0: 0
, 
free-letter: free-letter(x)
Lemmas referenced : 
monoid_hom_properties, 
free-group_wf, 
monoid_hom_p_wf, 
all_wf, 
equal_wf, 
grp_car_wf, 
free-letter_wf, 
subtype_rel_self, 
mon_subtype_grp_sig, 
grp_subtype_mon, 
subtype_rel_transitivity, 
grp_wf, 
mon_wf, 
grp_sig_wf, 
monoid_hom_wf, 
word-equiv-equiv, 
list_wf, 
word-equiv_wf, 
equal-wf-base, 
squash_wf, 
true_wf, 
subtype_quotient, 
iff_weakening_equal, 
transitive-closure-minimal, 
word-rel_wf, 
grp_hom_inv, 
grp_subtype_igrp, 
free-append_wf, 
cons_wf_listp, 
cons_wf, 
nil_wf, 
subtype_rel_set, 
free-word_wf, 
less_than_wf, 
length_wf, 
grp_op_wf, 
infix_ap_wf, 
monoid_p_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
mon_ident, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
reverse-cons, 
reverse_nil_lemma, 
map_cons_lemma, 
map_nil_lemma, 
decide_wf, 
free-word-inv_wf, 
grp_inverse, 
uall_wf, 
free-0_wf, 
list_induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
setElimination, 
rename, 
dependent_set_memberEquality, 
lambdaEquality, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
universeEquality, 
functionExtensionality, 
unionEquality, 
promote_hyp, 
independent_pairFormation, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
independent_functionElimination, 
productEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
cumulativity, 
hyp_replacement, 
applyLambdaEquality, 
setEquality, 
voidElimination, 
voidEquality, 
inlEquality, 
inrEquality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[X:Type]
    \mforall{}G:Group\{i\}
        \mforall{}[f,g:MonHom(free-group(X),G)].    f  =  g  supposing  \mforall{}x:X.  ((f  free-letter(x))  =  (g  free-letter(x)))
Date html generated:
2019_10_31-AM-07_23_46
Last ObjectModification:
2018_08_21-PM-03_50_05
Theory : free!groups
Home
Index