Nuprl Lemma : free-group-generators

[X:Type]
  ∀G:Group{i}
    ∀[f,g:MonHom(free-group(X),G)].
      g ∈ MonHom(free-group(X),G) supposing ∀x:X. ((f free-letter(x)) (g free-letter(x)) ∈ |G|)


Proof




Definitions occuring in Statement :  free-letter: free-letter(x) free-group: free-group(X) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a universe: Type equal: t ∈ T monoid_hom: MonHom(M1,M2) grp: Group{i} grp_car: |g|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B grp: Group{i} mon: Mon monoid_hom: MonHom(M1,M2) prop: so_lambda: λ2x.t[x] free-word: free-word(X) quotient: x,y:A//B[x; y] grp_car: |g| pi1: fst(t) free-group: free-group(X) guard: {T} so_apply: x[s] implies:  Q cand: c∧ B and: P ∧ Q squash: T true: True equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) word-equiv: word-equiv(X;w1;w2) exists: x:A. B[x] transitive-reflexive-closure: R^* or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q rel_implies: R1 => R2 infix_ap: y trans: Trans(T;x,y.E[x; y]) word-rel: word-rel(X;w1;w2) free-append: w' grp_inv: ~ pi2: snd(t) monoid_hom_p: IsMonHom{M1,M2}(f) grp_op: * grp_id: e fun_thru_2op: FunThru2op(A;B;opa;opb;f) listp: List+ imon: IMonoid append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] free-word-inv: free-word-inv(w) inverse-letters: -b free-0: 0 free-letter: free-letter(x)
Lemmas referenced :  monoid_hom_properties free-group_wf monoid_hom_p_wf all_wf equal_wf grp_car_wf free-letter_wf subtype_rel_self mon_subtype_grp_sig grp_subtype_mon subtype_rel_transitivity grp_wf mon_wf grp_sig_wf monoid_hom_wf word-equiv-equiv list_wf word-equiv_wf equal-wf-base squash_wf true_wf subtype_quotient iff_weakening_equal transitive-closure-minimal word-rel_wf grp_hom_inv grp_subtype_igrp free-append_wf cons_wf_listp cons_wf nil_wf subtype_rel_set free-word_wf less_than_wf length_wf grp_op_wf infix_ap_wf monoid_p_wf grp_id_wf inverse_wf grp_inv_wf mon_ident list_ind_cons_lemma list_ind_nil_lemma reverse-cons reverse_nil_lemma map_cons_lemma map_nil_lemma decide_wf free-word-inv_wf grp_inverse uall_wf free-0_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache sqequalRule setElimination rename dependent_set_memberEquality lambdaEquality instantiate independent_isectElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination universeEquality functionExtensionality unionEquality promote_hyp independent_pairFormation pointwiseFunctionality pertypeElimination productElimination independent_functionElimination productEquality imageElimination natural_numberEquality imageMemberEquality baseClosed unionElimination cumulativity hyp_replacement applyLambdaEquality setEquality voidElimination voidEquality inlEquality inrEquality equalityUniverse levelHypothesis

Latex:
\mforall{}[X:Type]
    \mforall{}G:Group\{i\}
        \mforall{}[f,g:MonHom(free-group(X),G)].    f  =  g  supposing  \mforall{}x:X.  ((f  free-letter(x))  =  (g  free-letter(x)))



Date html generated: 2019_10_31-AM-07_23_46
Last ObjectModification: 2018_08_21-PM-03_50_05

Theory : free!groups


Home Index