Nuprl Lemma : grp_hom_inv

[g,h:IGroup]. ∀[f:MonHom(g,h)]. ∀[a:|g|].  ((f (~ a)) (~ (f a)) ∈ |h|)


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) igrp: IGroup grp_inv: ~ grp_car: |g| uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T igrp: IGroup imon: IMonoid monoid_hom: MonHom(M1,M2) uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  grp_car_wf monoid_hom_wf igrp_wf grp_eq_op_l grp_inv_wf equal_wf squash_wf true_wf monoid_hom_op infix_ap_wf grp_op_wf iff_weakening_equal grp_inverse monoid_hom_id grp_id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache applyEquality productElimination independent_isectElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[g,h:IGroup].  \mforall{}[f:MonHom(g,h)].  \mforall{}[a:|g|].    ((f  (\msim{}  a))  =  (\msim{}  (f  a)))



Date html generated: 2017_10_01-AM-08_14_03
Last ObjectModification: 2017_02_28-PM-01_58_14

Theory : groups_1


Home Index