Nuprl Lemma : grp_hom_inv
∀[g,h:IGroup]. ∀[f:MonHom(g,h)]. ∀[a:|g|].  ((f (~ a)) = (~ (f a)) ∈ |h|)
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
igrp: IGroup
, 
grp_inv: ~
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
igrp: IGroup
, 
imon: IMonoid
, 
monoid_hom: MonHom(M1,M2)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
grp_car_wf, 
monoid_hom_wf, 
igrp_wf, 
grp_eq_op_l, 
grp_inv_wf, 
equal_wf, 
squash_wf, 
true_wf, 
monoid_hom_op, 
infix_ap_wf, 
grp_op_wf, 
iff_weakening_equal, 
grp_inverse, 
monoid_hom_id, 
grp_id_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[g,h:IGroup].  \mforall{}[f:MonHom(g,h)].  \mforall{}[a:|g|].    ((f  (\msim{}  a))  =  (\msim{}  (f  a)))
Date html generated:
2017_10_01-AM-08_14_03
Last ObjectModification:
2017_02_28-PM-01_58_14
Theory : groups_1
Home
Index