Nuprl Lemma : monoid_hom_op

[g,h:GrpSig]. ∀[f:MonHom(g,h)]. ∀[u,v:|g|].  ((f (u v)) ((f u) (f v)) ∈ |h|)


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) grp_op: * grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] infix_ap: y apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced :  grp_car_wf monoid_hom_wf grp_sig_wf monoid_hom_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache productElimination

Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].  \mforall{}[u,v:|g|].    ((f  (u  *  v))  =  ((f  u)  *  (f  v)))



Date html generated: 2016_05_15-PM-00_10_03
Last ObjectModification: 2015_12_26-PM-11_44_50

Theory : groups_1


Home Index