Nuprl Lemma : monoid_hom_op
∀[g,h:GrpSig]. ∀[f:MonHom(g,h)]. ∀[u,v:|g|].  ((f (u * v)) = ((f u) * (f v)) ∈ |h|)
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
grp_op: *
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
and: P ∧ Q
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced : 
grp_car_wf, 
monoid_hom_wf, 
grp_sig_wf, 
monoid_hom_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
productElimination
Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].  \mforall{}[u,v:|g|].    ((f  (u  *  v))  =  ((f  u)  *  (f  v)))
Date html generated:
2016_05_15-PM-00_10_03
Last ObjectModification:
2015_12_26-PM-11_44_50
Theory : groups_1
Home
Index