Nuprl Lemma : monoid_hom_id
∀[g,h:GrpSig]. ∀[f:MonHom(g,h)].  ((f e) = e ∈ |h|)
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
grp_id: e
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
and: P ∧ Q
Lemmas referenced : 
monoid_hom_wf, 
grp_sig_wf, 
monoid_hom_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
productElimination
Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].    ((f  e)  =  e)
Date html generated:
2016_05_15-PM-00_10_00
Last ObjectModification:
2015_12_26-PM-11_44_43
Theory : groups_1
Home
Index