Nuprl Lemma : monoid_hom_id

[g,h:GrpSig]. ∀[f:MonHom(g,h)].  ((f e) e ∈ |h|)


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) grp_id: e grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q
Lemmas referenced :  monoid_hom_wf grp_sig_wf monoid_hom_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache productElimination

Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].    ((f  e)  =  e)



Date html generated: 2016_05_15-PM-00_10_00
Last ObjectModification: 2015_12_26-PM-11_44_43

Theory : groups_1


Home Index