Step * of Lemma free-group-functor_wf

FreeGp ∈ Functor(TypeCat;Group)
BY
(ProveWfLemma THEN All (RepUR  ``type-cat group-cat mk-cat``) THEN Auto) }

1
1. Type
2. Type
3. X ⟶ Y
⊢ fg-lift(free-group(Y);λx.free-letter(f x)) ∈ MonHom(free-group(X),free-group(Y))

2
1. Type
2. Type
3. Type
4. X ⟶ Y
5. Y ⟶ z
⊢ fg-lift(free-group(z);λx@0.free-letter(g (f x@0)))
(fg-lift(free-group(z);λx.free-letter(g x)) fg-lift(free-group(Y);λx.free-letter(f x)))
∈ MonHom(free-group(X),free-group(z))

3
1. Type
⊢ fg-lift(free-group(X);λx@0.free-letter(x@0)) x.x) ∈ MonHom(free-group(X),free-group(X))


Latex:


Latex:
FreeGp  \mmember{}  Functor(TypeCat;Group)


By


Latex:
(ProveWfLemma  THEN  All  (RepUR    ``type-cat  group-cat  mk-cat``)  THEN  Auto)




Home Index