Step
*
2
of Lemma
free-group-functor_wf
1. X : Type
2. Y : Type
3. z : Type
4. f : X ⟶ Y
5. g : Y ⟶ z
⊢ fg-lift(free-group(z);λx@0.free-letter(g (f x@0)))
= (fg-lift(free-group(z);λx.free-letter(g x)) o fg-lift(free-group(Y);λx.free-letter(f x)))
∈ MonHom(free-group(X),free-group(z))
BY
{ (BLemma `free-group-generators` THEN Auto) }
1
.....wf.....
1. X : Type
2. Y : Type
3. z : Type
4. f : X ⟶ Y
5. g : Y ⟶ z
⊢ fg-lift(free-group(z);λx@0.free-letter(g (f x@0))) ∈ MonHom(free-group(X),free-group(z))
2
.....wf.....
1. X : Type
2. Y : Type
3. z : Type
4. f : X ⟶ Y
5. g : Y ⟶ z
⊢ fg-lift(free-group(z);λx.free-letter(g x)) o fg-lift(free-group(Y);λx.free-letter(f x))
∈ MonHom(free-group(X),free-group(z))
3
1. X : Type
2. Y : Type
3. z : Type
4. f : X ⟶ Y
5. g : Y ⟶ z
6. x : X
⊢ (fg-lift(free-group(z);λx@0.free-letter(g (f x@0))) free-letter(x))
= ((fg-lift(free-group(z);λx.free-letter(g x)) o fg-lift(free-group(Y);λx.free-letter(f x))) free-letter(x))
∈ |free-group(z)|
Latex:
Latex:
1. X : Type
2. Y : Type
3. z : Type
4. f : X {}\mrightarrow{} Y
5. g : Y {}\mrightarrow{} z
\mvdash{} fg-lift(free-group(z);\mlambda{}x@0.free-letter(g (f x@0)))
= (fg-lift(free-group(z);\mlambda{}x.free-letter(g x)) o fg-lift(free-group(Y);\mlambda{}x.free-letter(f x)))
By
Latex:
(BLemma `free-group-generators` THEN Auto)
Home
Index