Step
*
2
2
of Lemma
free-group-functor_wf
.....wf.....
1. X : Type
2. Y : Type
3. z : Type
4. f : X ⟶ Y
5. g : Y ⟶ z
⊢ fg-lift(free-group(z);λx.free-letter(g x)) o fg-lift(free-group(Y);λx.free-letter(f x))
∈ MonHom(free-group(X),free-group(z))
BY
{ ((GenConcl ⌜(λx.free-letter(f x)) = h ∈ (X ⟶ |free-group(Y)|)⌝⋅ THEN Auto)
THEN GenConcl ⌜(λx.free-letter(g x)) = h ∈ (Y ⟶ |free-group(z)|)⌝⋅
THEN Auto) }
Latex:
Latex:
.....wf.....
1. X : Type
2. Y : Type
3. z : Type
4. f : X {}\mrightarrow{} Y
5. g : Y {}\mrightarrow{} z
\mvdash{} fg-lift(free-group(z);\mlambda{}x.free-letter(g x)) o fg-lift(free-group(Y);\mlambda{}x.free-letter(f x))
\mmember{} MonHom(free-group(X),free-group(z))
By
Latex:
((GenConcl \mkleeneopen{}(\mlambda{}x.free-letter(f x)) = h\mkleeneclose{}\mcdot{} THEN Auto)
THEN GenConcl \mkleeneopen{}(\mlambda{}x.free-letter(g x)) = h\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index