Step
*
3
2
of Lemma
functor-curry_wf
1. A : SmallCategory
2. B : SmallCategory
3. C : SmallCategory
4. F : cat-ob(FUN(A × B;C))
5. x : cat-ob(A)
6. A@0 : cat-ob(B)
7. B@0 : cat-ob(B)
8. g : cat-arrow(B) A@0 B@0
⊢ (cat-comp(C) (F <x, A@0>) (F <x, A@0>) (F <x, B@0>) (F <x, A@0> <x, A@0> <cat-id(A) x, cat-id(B) A@0>) (F <x, A@0> <x,\000C B@0> <cat-id(A) x, g>))
= (cat-comp(C) (F <x, A@0>) (F <x, B@0>) (F <x, B@0>) (F <x, A@0> <x, B@0> <cat-id(A) x, g>) (F <x, B@0> <x, B@0> <cat-i\000Cd(A) x, cat-id(B) B@0>))
∈ (cat-arrow(C) (F <x, A@0>) (F <x, B@0>))
BY
{ NormCatEq THEN Auto }
Latex:
Latex:
1. A : SmallCategory
2. B : SmallCategory
3. C : SmallCategory
4. F : cat-ob(FUN(A \mtimes{} B;C))
5. x : cat-ob(A)
6. A@0 : cat-ob(B)
7. B@0 : cat-ob(B)
8. g : cat-arrow(B) A@0 B@0
\mvdash{} (cat-comp(C) (F <x, A@0>) (F <x, A@0>) (F <x, B@0>) (F <x, A@0> <x, A@0> <cat-id(A) x, cat-id(B) A\000C@0>)
(F <x, A@0> <x, B@0> <cat-id(A) x, g>))
= (cat-comp(C) (F <x, A@0>) (F <x, B@0>) (F <x, B@0>) (F <x, A@0> <x, B@0> <cat-id(A) x, g>)
(F <x, B@0> <x, B@0> <cat-id(A) x, cat-id(B) B@0>))
By
Latex:
NormCatEq THEN Auto
Home
Index