Nuprl Lemma : id_prod_cat_lemma
∀x,B,A:Top. (cat-id(A × B) x ~ <cat-id(A) (fst(x)), cat-id(B) (snd(x))>)
Proof
Definitions occuring in Statement :
product-cat: A × B
,
cat-id: cat-id(C)
,
top: Top
,
pi1: fst(t)
,
pi2: snd(t)
,
all: ∀x:A. B[x]
,
apply: f a
,
pair: <a, b>
,
sqequal: s ~ t
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
cat-id: cat-id(C)
,
product-cat: A × B
,
pi2: snd(t)
,
pi1: fst(t)
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
sqequalRule,
hypothesis,
introduction,
extract_by_obid
Latex:
\mforall{}x,B,A:Top. (cat-id(A \mtimes{} B) x \msim{} <cat-id(A) (fst(x)), cat-id(B) (snd(x))>)
Date html generated:
2017_01_10-AM-08_41_33
Last ObjectModification:
2017_01_09-PM-00_46_51
Theory : small!categories
Home
Index