Nuprl Lemma : id_prod_cat_lemma

x,B,A:Top.  (cat-id(A × B) ~ <cat-id(A) (fst(x)), cat-id(B) (snd(x))>)


Proof




Definitions occuring in Statement :  product-cat: A × B cat-id: cat-id(C) top: Top pi1: fst(t) pi2: snd(t) all: x:A. B[x] apply: a pair: <a, b> sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] cat-id: cat-id(C) product-cat: A × B pi2: snd(t) pi1: fst(t) member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis introduction extract_by_obid

Latex:
\mforall{}x,B,A:Top.    (cat-id(A  \mtimes{}  B)  x  \msim{}  <cat-id(A)  (fst(x)),  cat-id(B)  (snd(x))>)



Date html generated: 2017_01_10-AM-08_41_33
Last ObjectModification: 2017_01_09-PM-00_46_51

Theory : small!categories


Home Index