Step
*
2
of Lemma
presheaf-element-map_wf
.....wf.....
1. C : SmallCategory
2. A : Presheaf(C)
3. B : Presheaf(C)
4. m : A ⟶ B
⊢ λp,q,f. f ∈ x:cat-ob(el(A))
⟶ y:cat-ob(el(A))
⟶ (cat-arrow(el(A)) x y)
⟶ (cat-arrow(el(B)) let I,a = x in <I, m I a> let I,a = y in <I, m I a>)
BY
{ (RepeatFor 2 (((FunExt THENA Auto) THEN D -1))
THEN (FunExt THENA (Auto THEN RepUR ``presheaf-elements mk-cat`` 0 THEN Auto))
THEN RepUR ``presheaf-elements mk-cat`` (-1)
THEN RepUR ``presheaf-elements mk-cat`` 0) }
1
1. C : SmallCategory
2. A : Presheaf(C)
3. B : Presheaf(C)
4. m : A ⟶ B
5. A@0 : cat-ob(op-cat(C))
6. x1 : ob(A) A@0
7. A1 : cat-ob(op-cat(C))
8. y1 : ob(A) A1
9. x : {f:cat-arrow(op-cat(C)) A1 A@0| (arrow(A) A1 A@0 f y1) = x1 ∈ (ob(A) A@0)}
⊢ x ∈ {f:cat-arrow(op-cat(C)) A1 A@0| (arrow(B) A1 A@0 f (m A1 y1)) = (m A@0 x1) ∈ (ob(B) A@0)}
Latex:
Latex:
.....wf.....
1. C : SmallCategory
2. A : Presheaf(C)
3. B : Presheaf(C)
4. m : A {}\mrightarrow{} B
\mvdash{} \mlambda{}p,q,f. f \mmember{} x:cat-ob(el(A))
{}\mrightarrow{} y:cat-ob(el(A))
{}\mrightarrow{} (cat-arrow(el(A)) x y)
{}\mrightarrow{} (cat-arrow(el(B)) let I,a = x in <I, m I a> let I,a = y in <I, m I a>)
By
Latex:
(RepeatFor 2 (((FunExt THENA Auto) THEN D -1))
THEN (FunExt THENA (Auto THEN RepUR ``presheaf-elements mk-cat`` 0 THEN Auto))
THEN RepUR ``presheaf-elements mk-cat`` (-1)
THEN RepUR ``presheaf-elements mk-cat`` 0)
Home
Index