Nuprl Lemma : presheaf-element-map_wf
∀[C:SmallCategory]. ∀[A,B:Presheaf(C)]. ∀[m:A ⟶ B].  (presheaf-element-map(m) ∈ Functor(el(A);el(B)))
Proof
Definitions occuring in Statement : 
presheaf-element-map: presheaf-element-map(m)
, 
presheaf_map: A ⟶ B
, 
presheaf-elements: el(P)
, 
presheaf: Presheaf(C)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-element-map: presheaf-element-map(m)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
uimplies: b supposing a
, 
presheaf-elements: el(P)
, 
mk-cat: mk-cat, 
top: Top
, 
presheaf_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
subtype_rel: A ⊆r B
, 
cat-arrow: cat-arrow(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
presheaf: Presheaf(C)
, 
cat-ob: cat-ob(C)
, 
prop: ℙ
, 
compose: f o g
Lemmas referenced : 
mk-functor_wf, 
presheaf-elements_wf, 
presheaf_map_wf, 
presheaf_wf, 
small-category_wf, 
cat_ob_pair_lemma, 
subtype_rel_self, 
functor-ob_wf, 
op-cat_wf, 
type-cat_wf, 
cat-ob_wf, 
small-category-subtype, 
cat_arrow_triple_lemma, 
cat-arrow_wf, 
equal_wf, 
functor-arrow_wf, 
cat_comp_tuple_lemma, 
cat-comp_wf, 
functor-arrow-comp, 
cat_id_tuple_lemma, 
cat-id_wf, 
functor-arrow-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
functionExtensionality, 
productElimination, 
dependent_pairEquality, 
applyEquality, 
setElimination, 
rename, 
functionEquality, 
instantiate, 
productEquality, 
universeEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
lambdaFormation
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Presheaf(C)].  \mforall{}[m:A  {}\mrightarrow{}  B].
    (presheaf-element-map(m)  \mmember{}  Functor(el(A);el(B)))
Date html generated:
2017_10_05-AM-00_51_29
Last ObjectModification:
2017_10_04-PM-06_55_47
Theory : small!categories
Home
Index