Nuprl Lemma : presheaf-element-map_wf

[C:SmallCategory]. ∀[A,B:Presheaf(C)]. ∀[m:A ⟶ B].  (presheaf-element-map(m) ∈ Functor(el(A);el(B)))


Proof




Definitions occuring in Statement :  presheaf-element-map: presheaf-element-map(m) presheaf_map: A ⟶ B presheaf-elements: el(P) presheaf: Presheaf(C) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-element-map: presheaf-element-map(m) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] uimplies: supposing a presheaf-elements: el(P) mk-cat: mk-cat top: Top presheaf_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) subtype_rel: A ⊆B cat-arrow: cat-arrow(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat presheaf: Presheaf(C) cat-ob: cat-ob(C) prop: compose: g
Lemmas referenced :  mk-functor_wf presheaf-elements_wf presheaf_map_wf presheaf_wf small-category_wf cat_ob_pair_lemma subtype_rel_self functor-ob_wf op-cat_wf type-cat_wf cat-ob_wf small-category-subtype cat_arrow_triple_lemma cat-arrow_wf equal_wf functor-arrow_wf cat_comp_tuple_lemma cat-comp_wf functor-arrow-comp cat_id_tuple_lemma cat-id_wf functor-arrow-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis sqequalRule independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache voidElimination voidEquality functionExtensionality productElimination dependent_pairEquality applyEquality setElimination rename functionEquality instantiate productEquality universeEquality dependent_set_memberEquality applyLambdaEquality lambdaFormation

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:Presheaf(C)].  \mforall{}[m:A  {}\mrightarrow{}  B].
    (presheaf-element-map(m)  \mmember{}  Functor(el(A);el(B)))



Date html generated: 2017_10_05-AM-00_51_29
Last ObjectModification: 2017_10_04-PM-06_55_47

Theory : small!categories


Home Index