Nuprl Lemma : presheaf-elements_wf
∀C:SmallCategory. ∀P:Presheaf(C).  (el(P) ∈ SmallCategory)
Proof
Definitions occuring in Statement : 
presheaf-elements: el(P)
, 
presheaf: Presheaf(C)
, 
small-category: SmallCategory
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
presheaf: Presheaf(C)
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
type-cat: TypeCat
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
prop: ℙ
, 
presheaf-elements: el(P)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
so_apply: x[s1;s2;s3;s4;s5]
, 
uimplies: b supposing a
, 
top: Top
, 
compose: f o g
, 
and: P ∧ Q
, 
guard: {T}
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
presheaf_wf, 
small-category_wf, 
cat-ob_wf, 
op-cat_wf, 
functor-ob_wf, 
small-category-subtype, 
type-cat_wf, 
subtype_rel_self, 
cat-arrow_wf, 
equal_wf, 
functor-arrow_wf, 
mk-cat_wf, 
cat-id_wf, 
functor-arrow-id, 
cat_arrow_triple_lemma, 
istype-void, 
cat_id_tuple_lemma, 
cat-comp_wf, 
functor-arrow-comp, 
cat_comp_tuple_lemma, 
cat-comp-ident, 
cat-comp-assoc, 
squash_wf, 
true_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
productEquality, 
applyEquality, 
instantiate, 
sqequalRule, 
universeEquality, 
spreadEquality, 
setEquality, 
because_Cache, 
functionEquality, 
inhabitedIsType, 
productIsType, 
productElimination, 
setIsType, 
equalityIsType1, 
lambdaEquality_alt, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
independent_pairFormation, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}C:SmallCategory.  \mforall{}P:Presheaf(C).    (el(P)  \mmember{}  SmallCategory)
Date html generated:
2019_10_31-AM-07_25_09
Last ObjectModification:
2018_11_10-AM-11_35_10
Theory : small!categories
Home
Index