Nuprl Lemma : functor-arrow-id

[C,D:SmallCategory]. ∀[F:Functor(C;D)].
  ∀x:cat-ob(C)
    ((functor-arrow(F) (cat-id(C) x))
    (cat-id(D) (functor-ob(F) x))
    ∈ (cat-arrow(D) (functor-ob(F) x) (functor-ob(F) x)))


Proof




Definitions occuring in Statement :  functor-arrow: functor-arrow(F) functor-ob: functor-ob(F) cat-functor: Functor(C1;C2) cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  top: Top mk-functor: mk-functor(ob;arrow) and: P ∧ Q cat-functor: Functor(C1;C2) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-functor_wf cat-ob_wf functor_arrow_pair_lemma functor_ob_pair_lemma
Rules used in proof :  because_Cache axiomEquality lambdaEquality isectElimination hypothesisEquality hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid sqequalRule productElimination rename thin setElimination sqequalHypSubstitution lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].
    \mforall{}x:cat-ob(C).  ((functor-arrow(F)  x  x  (cat-id(C)  x))  =  (cat-id(D)  (functor-ob(F)  x)))



Date html generated: 2017_01_11-AM-09_17_56
Last ObjectModification: 2017_01_10-PM-00_32_26

Theory : small!categories


Home Index