Nuprl Lemma : functor-arrow-comp

[C,D:SmallCategory]. ∀[F:Functor(C;D)]. ∀[x,y,z:cat-ob(C)]. ∀[f:cat-arrow(C) y]. ∀[g:cat-arrow(C) z].
  ((functor-arrow(F) (cat-comp(C) g))
  (cat-comp(D) (functor-ob(F) x) (functor-ob(F) y) (functor-ob(F) z) (functor-arrow(F) f) 
     (functor-arrow(F) g))
  ∈ (cat-arrow(D) (functor-ob(F) x) (functor-ob(F) z)))


Proof




Definitions occuring in Statement :  functor-arrow: functor-arrow(F) functor-ob: functor-ob(F) cat-functor: Functor(C1;C2) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  top: Top all: x:A. B[x] mk-functor: mk-functor(ob;arrow) and: P ∧ Q cat-functor: Functor(C1;C2) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-functor_wf cat-ob_wf cat-arrow_wf functor_arrow_pair_lemma functor_ob_pair_lemma
Rules used in proof :  because_Cache axiomEquality isectElimination applyEquality hypothesisEquality hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid sqequalRule productElimination rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].  \mforall{}[x,y,z:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].
\mforall{}[g:cat-arrow(C)  y  z].
    ((functor-arrow(F)  x  z  (cat-comp(C)  x  y  z  f  g))
    =  (cat-comp(D)  (functor-ob(F)  x)  (functor-ob(F)  y)  (functor-ob(F)  z)  (functor-arrow(F)  x  y  f) 
          (functor-arrow(F)  y  z  g)))



Date html generated: 2017_01_11-AM-09_17_59
Last ObjectModification: 2017_01_10-PM-00_33_29

Theory : small!categories


Home Index