Nuprl Lemma : functor-arrow-comp
∀[C,D:SmallCategory]. ∀[F:Functor(C;D)]. ∀[x,y,z:cat-ob(C)]. ∀[f:cat-arrow(C) x y]. ∀[g:cat-arrow(C) y z].
  ((functor-arrow(F) x z (cat-comp(C) x y z f g))
  = (cat-comp(D) (functor-ob(F) x) (functor-ob(F) y) (functor-ob(F) z) (functor-arrow(F) x y f) 
     (functor-arrow(F) y z g))
  ∈ (cat-arrow(D) (functor-ob(F) x) (functor-ob(F) z)))
Proof
Definitions occuring in Statement : 
functor-arrow: functor-arrow(F)
, 
functor-ob: functor-ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top
, 
all: ∀x:A. B[x]
, 
mk-functor: mk-functor(ob;arrow)
, 
and: P ∧ Q
, 
cat-functor: Functor(C1;C2)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-functor_wf, 
cat-ob_wf, 
cat-arrow_wf, 
functor_arrow_pair_lemma, 
functor_ob_pair_lemma
Rules used in proof : 
because_Cache, 
axiomEquality, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
sqequalRule, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].  \mforall{}[x,y,z:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].
\mforall{}[g:cat-arrow(C)  y  z].
    ((functor-arrow(F)  x  z  (cat-comp(C)  x  y  z  f  g))
    =  (cat-comp(D)  (functor-ob(F)  x)  (functor-ob(F)  y)  (functor-ob(F)  z)  (functor-arrow(F)  x  y  f) 
          (functor-arrow(F)  y  z  g)))
Date html generated:
2017_01_11-AM-09_17_59
Last ObjectModification:
2017_01_10-PM-00_33_29
Theory : small!categories
Home
Index