Step
*
of Lemma
rep-sub-sheaf_wf
∀[C:SmallCategory]. ∀[X:cat-ob(C)]. ∀[P:U:cat-ob(C) ⟶ (cat-arrow(C) U X) ⟶ ℙ].
rep-sub-sheaf(C;X;P) ∈ Functor(op-cat(C);TypeCat)
supposing ∀A,B:cat-ob(C). ∀g:cat-arrow(C) A B. ∀b:{b:cat-arrow(C) B X| P B b} . (P A (cat-comp(C) A B X g b))
BY
{ (Auto
THEN Unfold `rep-sub-sheaf` 0
THEN MemTypeCD
THEN Reduce 0
THEN ((D 1
THEN RepeatFor 3 (D (-5))
THEN All (RepUR ``cat-ob op-cat cat-arrow cat-comp cat-id type-cat compose``)⋅
THEN All Reduce
THEN Auto)
ORELSE (D -1 THEN Reduce 0 THEN Auto)
)) }
Latex:
Latex:
\mforall{}[C:SmallCategory]. \mforall{}[X:cat-ob(C)]. \mforall{}[P:U:cat-ob(C) {}\mrightarrow{} (cat-arrow(C) U X) {}\mrightarrow{} \mBbbP{}].
rep-sub-sheaf(C;X;P) \mmember{} Functor(op-cat(C);TypeCat)
supposing \mforall{}A,B:cat-ob(C). \mforall{}g:cat-arrow(C) A B. \mforall{}b:\{b:cat-arrow(C) B X| P B b\} .
(P A (cat-comp(C) A B X g b))
By
Latex:
(Auto
THEN Unfold `rep-sub-sheaf` 0
THEN MemTypeCD
THEN Reduce 0
THEN ((D 1
THEN RepeatFor 3 (D (-5))
THEN All (RepUR ``cat-ob op-cat cat-arrow cat-comp cat-id type-cat compose``)\mcdot{}
THEN All Reduce
THEN Auto)
ORELSE (D -1 THEN Reduce 0 THEN Auto)
))
Home
Index