Nuprl Lemma : rep-sub-sheaf_wf

[C:SmallCategory]. ∀[X:cat-ob(C)]. ∀[P:U:cat-ob(C) ⟶ (cat-arrow(C) X) ⟶ ℙ].
  rep-sub-sheaf(C;X;P) ∈ Functor(op-cat(C);TypeCat) 
  supposing ∀A,B:cat-ob(C). ∀g:cat-arrow(C) B. ∀b:{b:cat-arrow(C) X| b} .  (P (cat-comp(C) b))


Proof




Definitions occuring in Statement :  rep-sub-sheaf: rep-sub-sheaf(C;X;P) type-cat: TypeCat op-cat: op-cat(C) cat-functor: Functor(C1;C2) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rep-sub-sheaf: rep-sub-sheaf(C;X;P) cat-functor: Functor(C1;C2) small-category: SmallCategory cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat op-cat: op-cat(C) spreadn: spread4 and: P ∧ Q subtype_rel: A ⊆B cat-id: cat-id(C) compose: g cand: c∧ B all: x:A. B[x] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf iff_weakening_equal set_wf all_wf cat-ob_wf op-cat_wf cat-arrow_wf type-cat_wf cat-id_wf cat-comp_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalHypSubstitution setElimination thin rename productElimination sqequalRule dependent_pairEquality lambdaEquality setEquality applyEquality functionExtensionality hypothesisEquality cumulativity because_Cache hypothesis functionEquality lambdaFormation independent_pairFormation imageElimination extract_by_obid isectElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination productEquality instantiate axiomEquality isect_memberEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:cat-ob(C)].  \mforall{}[P:U:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(C)  U  X)  {}\mrightarrow{}  \mBbbP{}].
    rep-sub-sheaf(C;X;P)  \mmember{}  Functor(op-cat(C);TypeCat) 
    supposing  \mforall{}A,B:cat-ob(C).  \mforall{}g:cat-arrow(C)  A  B.  \mforall{}b:\{b:cat-arrow(C)  B  X|  P  B  b\}  .
                            (P  A  (cat-comp(C)  A  B  X  g  b))



Date html generated: 2017_10_05-AM-00_47_10
Last ObjectModification: 2017_07_28-AM-09_19_34

Theory : small!categories


Home Index