Nuprl Lemma : rep-sub-sheaf_wf
∀[C:SmallCategory]. ∀[X:cat-ob(C)]. ∀[P:U:cat-ob(C) ⟶ (cat-arrow(C) U X) ⟶ ℙ].
  rep-sub-sheaf(C;X;P) ∈ Functor(op-cat(C);TypeCat) 
  supposing ∀A,B:cat-ob(C). ∀g:cat-arrow(C) A B. ∀b:{b:cat-arrow(C) B X| P B b} .  (P A (cat-comp(C) A B X g b))
Proof
Definitions occuring in Statement : 
rep-sub-sheaf: rep-sub-sheaf(C;X;P)
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
cat-functor: Functor(C1;C2)
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
cat-id: cat-id(C)
, 
compose: f o g
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
set_wf, 
all_wf, 
cat-ob_wf, 
op-cat_wf, 
cat-arrow_wf, 
type-cat_wf, 
cat-id_wf, 
cat-comp_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
dependent_pairEquality, 
lambdaEquality, 
setEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
because_Cache, 
hypothesis, 
functionEquality, 
lambdaFormation, 
independent_pairFormation, 
imageElimination, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
productEquality, 
instantiate, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:cat-ob(C)].  \mforall{}[P:U:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(C)  U  X)  {}\mrightarrow{}  \mBbbP{}].
    rep-sub-sheaf(C;X;P)  \mmember{}  Functor(op-cat(C);TypeCat) 
    supposing  \mforall{}A,B:cat-ob(C).  \mforall{}g:cat-arrow(C)  A  B.  \mforall{}b:\{b:cat-arrow(C)  B  X|  P  B  b\}  .
                            (P  A  (cat-comp(C)  A  B  X  g  b))
Date html generated:
2017_10_05-AM-00_47_10
Last ObjectModification:
2017_07_28-AM-09_19_34
Theory : small!categories
Home
Index