Nuprl Lemma : comb_for_int_upper_wf

λn,z. {n...} ∈ n:ℤ ⟶ (↓True) ⟶ 𝕌1


Proof




Definitions occuring in Statement :  int_upper: {i...} squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  int_upper_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality instantiate hypothesis Error :universeIsType,  intEquality

Latex:
\mlambda{}n,z.  \{n...\}  \mmember{}  n:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbU{}\msubone{}



Date html generated: 2019_06_20-AM-11_23_54
Last ObjectModification: 2018_09_28-PM-11_35_06

Theory : arithmetic


Home Index