Nuprl Lemma : comb_for_int_upper_wf
λn,z. {n...} ∈ n:ℤ ⟶ (↓True) ⟶ 𝕌1
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
int_upper_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
Error :universeIsType, 
intEquality
Latex:
\mlambda{}n,z.  \{n...\}  \mmember{}  n:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbU{}\msubone{}
Date html generated:
2019_06_20-AM-11_23_54
Last ObjectModification:
2018_09_28-PM-11_35_06
Theory : arithmetic
Home
Index