Nuprl Lemma : comb_for_int_upper_wf
λn,z. {n...} ∈ n:ℤ ⟶ (↓True) ⟶ 𝕌1
Proof
Definitions occuring in Statement :
int_upper: {i...}
,
squash: ↓T
,
true: True
,
member: t ∈ T
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
member: t ∈ T
,
squash: ↓T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
Lemmas referenced :
int_upper_wf,
squash_wf,
true_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :lambdaEquality_alt,
sqequalHypSubstitution,
imageElimination,
cut,
introduction,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
instantiate,
hypothesis,
Error :universeIsType,
intEquality
Latex:
\mlambda{}n,z. \{n...\} \mmember{} n:\mBbbZ{} {}\mrightarrow{} (\mdownarrow{}True) {}\mrightarrow{} \mBbbU{}\msubone{}
Date html generated:
2019_06_20-AM-11_23_54
Last ObjectModification:
2018_09_28-PM-11_35_06
Theory : arithmetic
Home
Index