Step
*
1
1
3
of Lemma
div_2_to_1
1. a : ℤ
2. a ≤ 0
3. b : ℤ
4. 0 < b
5. 0 ≤ ((-1) * a)
6. (0 rem b) = 0 ∈ ℤ
7. (-a) = ((((-a) ÷ b) * b) + (-a rem b)) ∈ ℤ
8. 0 ≤ (-a rem b)
9. -a rem b < b
⊢ 0 < -(-a rem b)
⇒ 0 < a
BY
{ ((D 0 THENA Auto)
THEN (Add ⌜-a rem b⌝ (-1)⋅ THENA Auto)
THEN (RW IntNormC (-1) THENA Auto)
THEN (FLemma `rem-sign` [-1] THENA Auto)
THEN Add ⌜a⌝ (-1)⋅
THEN RW IntNormC (-1)
THEN Auto) }
Latex:
Latex:
1. a : \mBbbZ{}
2. a \mleq{} 0
3. b : \mBbbZ{}
4. 0 < b
5. 0 \mleq{} ((-1) * a)
6. (0 rem b) = 0
7. (-a) = ((((-a) \mdiv{} b) * b) + (-a rem b))
8. 0 \mleq{} (-a rem b)
9. -a rem b < b
\mvdash{} 0 < -(-a rem b) {}\mRightarrow{} 0 < a
By
Latex:
((D 0 THENA Auto)
THEN (Add \mkleeneopen{}-a rem b\mkleeneclose{} (-1)\mcdot{} THENA Auto)
THEN (RW IntNormC (-1) THENA Auto)
THEN (FLemma `rem-sign` [-1] THENA Auto)
THEN Add \mkleeneopen{}a\mkleeneclose{} (-1)\mcdot{}
THEN RW IntNormC (-1)
THEN Auto)
Home
Index