Nuprl Lemma : seq-comp-truncate

[T:Type]. ∀[s:sequence(T)]. ∀[f,n:Top].  (f seq-truncate(s;n) seq-truncate(f s;n))


Proof




Definitions occuring in Statement :  seq-truncate: seq-truncate(s;n) seq-comp: s sequence: sequence(T) uall: [x:A]. B[x] top: Top universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sequence: sequence(T) seq-comp: s seq-truncate: seq-truncate(s;n)
Lemmas referenced :  top_wf sequence_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction sqequalHypSubstitution productElimination thin sqequalRule sqequalAxiom because_Cache cut extract_by_obid hypothesis isectElimination hypothesisEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[f,n:Top].    (f  o  seq-truncate(s;n)  \msim{}  seq-truncate(f  o  s;n))



Date html generated: 2018_07_25-PM-01_28_50
Last ObjectModification: 2018_06_12-AM-10_50_12

Theory : arithmetic


Home Index