Step
*
2
1
of Lemma
AF-uniform-induction
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. ∀x,y,z:T. ((¬R[x;y])
⇒ (¬R[y;z])
⇒ (¬R[x;z]))
4. AFx,y:T.R[x;y]
5. Q : T ⟶ ℙ
6. F : ∀[t:T]. ((∀[s:{s:T| ¬R[t;s]} ]. Q[s])
⇒ Q[t])
7. t : T
8. AF-spread-law(x,y.R[x;y]) ∈ n:ℕ ⟶ (ℕn ⟶ (T?)) ⟶ (T?) ⟶ ℙ
9. AFbar() ∈ n:ℕ ⟶ AF-spread-law(x,y.R[x;y])-consistent-seq(n) ⟶ ℙ
10. n : ℕ
11. s : ℕn ⟶ (T?)
12. ∀%9:ℕn. (AF-spread-law(x,y.R[x;y]) %9 s (s %9))
13. ∀t1:{t1:T?| AF-spread-law(x,y.R[x;y]) n s t1}
(case t1 of inl(z) => fix(F) | inr(z) => Ax ∈ case t1 of inl(z) => Q[z] | inr(z) => True)
⊢ if (n =z 0) then fix(F) else case s (n - 1) of inl(z) => fix(F) | inr(z) => Ax fi ∈ if (n =z 0)
then Q[t]
else case s (n - 1) of inl(z) => Q[z] | inr(z) => True
fi
BY
{ RepUR ``AF-spread-law`` -1 }
1
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. ∀x,y,z:T. ((¬R[x;y])
⇒ (¬R[y;z])
⇒ (¬R[x;z]))
4. AFx,y:T.R[x;y]
5. Q : T ⟶ ℙ
6. F : ∀[t:T]. ((∀[s:{s:T| ¬R[t;s]} ]. Q[s])
⇒ Q[t])
7. t : T
8. AF-spread-law(x,y.R[x;y]) ∈ n:ℕ ⟶ (ℕn ⟶ (T?)) ⟶ (T?) ⟶ ℙ
9. AFbar() ∈ n:ℕ ⟶ AF-spread-law(x,y.R[x;y])-consistent-seq(n) ⟶ ℙ
10. n : ℕ
11. s : ℕn ⟶ (T?)
12. ∀%9:ℕn. (AF-spread-law(x,y.R[x;y]) %9 s (s %9))
13. ∀t1:{t1:T?| (↑isl(t1))
⇒ (∀i:ℕn. ((↑isl(s i)) ∧ (¬R[outl(s i);outl(t1)])))}
(case t1 of inl(z) => fix(F) | inr(z) => Ax ∈ case t1 of inl(z) => Q[z] | inr(z) => True)
⊢ if (n =z 0) then fix(F) else case s (n - 1) of inl(z) => fix(F) | inr(z) => Ax fi ∈ if (n =z 0)
then Q[t]
else case s (n - 1) of inl(z) => Q[z] | inr(z) => True
fi
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. \mforall{}x,y,z:T. ((\mneg{}R[x;y]) {}\mRightarrow{} (\mneg{}R[y;z]) {}\mRightarrow{} (\mneg{}R[x;z]))
4. AFx,y:T.R[x;y]
5. Q : T {}\mrightarrow{} \mBbbP{}
6. F : \mforall{}[t:T]. ((\mforall{}[s:\{s:T| \mneg{}R[t;s]\} ]. Q[s]) {}\mRightarrow{} Q[t])
7. t : T
8. AF-spread-law(x,y.R[x;y]) \mmember{} n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} (T?)) {}\mrightarrow{} (T?) {}\mrightarrow{} \mBbbP{}
9. AFbar() \mmember{} n:\mBbbN{} {}\mrightarrow{} AF-spread-law(x,y.R[x;y])-consistent-seq(n) {}\mrightarrow{} \mBbbP{}
10. n : \mBbbN{}
11. s : \mBbbN{}n {}\mrightarrow{} (T?)
12. \mforall{}\%9:\mBbbN{}n. (AF-spread-law(x,y.R[x;y]) \%9 s (s \%9))
13. \mforall{}t1:\{t1:T?| AF-spread-law(x,y.R[x;y]) n s t1\}
(case t1 of inl(z) => fix(F) | inr(z) => Ax \mmember{} case t1 of inl(z) => Q[z] | inr(z) => True)
\mvdash{} if (n =\msubz{} 0) then fix(F) else case s (n - 1) of inl(z) => fix(F) | inr(z) => Ax fi \mmember{} if (n =\msubz{} 0)
then Q[t]
else case s (n - 1) of inl(z) => Q[z] | inr(z) => True
fi
By
Latex:
RepUR ``AF-spread-law`` -1
Home
Index