Step
*
of Lemma
cWO-rel-path-barred
∀[T:Type]
∀[R:T ⟶ T ⟶ ℙ]
(∀f:ℕ ⟶ T. (↓∃m:ℕ. ∃n:ℕm. (¬R[f n;f m])))
⇒ (∀alpha:{f:ℕ ⟶ (T?)| ∀x:ℕ. (cWO-rel(R) x f (f x))} . (↓∃m:ℕ. (cWObar() m alpha)))
supposing ∀a,b,c:T. (R[a;b]
⇒ R[b;c]
⇒ R[a;c])
supposing T
BY
{ TACTIC:(Auto THEN All (RepUR ``cWO-rel cWObar``)) }
1
1. T : Type
2. T
3. R : T ⟶ T ⟶ ℙ
4. ∀a,b,c:T. (R[a;b]
⇒ R[b;c]
⇒ R[a;c])
5. ∀f:ℕ ⟶ T. (↓∃m:ℕ. ∃n:ℕm. (¬R[f n;f m]))
6. alpha : {f:ℕ ⟶ (T?)| ∀x:ℕ. ((0 < x ∧ (↑isl(f x)))
⇒ ((↑isl(f (x - 1))) ∧ (R outl(f (x - 1)) outl(f x))))} @i
⊢ ↓∃m:ℕ. (0 < m ∧ (↑isr(alpha (m - 1))))
Latex:
Latex:
\mforall{}[T:Type]
\mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]
(\mforall{}f:\mBbbN{} {}\mrightarrow{} T. (\mdownarrow{}\mexists{}m:\mBbbN{}. \mexists{}n:\mBbbN{}m. (\mneg{}R[f n;f m])))
{}\mRightarrow{} (\mforall{}alpha:\{f:\mBbbN{} {}\mrightarrow{} (T?)| \mforall{}x:\mBbbN{}. (cWO-rel(R) x f (f x))\} . (\mdownarrow{}\mexists{}m:\mBbbN{}. (cWObar() m alpha)))
supposing \mforall{}a,b,c:T. (R[a;b] {}\mRightarrow{} R[b;c] {}\mRightarrow{} R[a;c])
supposing T
By
Latex:
TACTIC:(Auto THEN All (RepUR ``cWO-rel cWObar``))
Home
Index