Nuprl Lemma : cWO-rel-path-barred

[T:Type]
  ∀[R:T ⟶ T ⟶ ℙ]
    (∀f:ℕ ⟶ T. (↓∃m:ℕ. ∃n:ℕm. R[f n;f m])))
     (∀alpha:{f:ℕ ⟶ (T?)| ∀x:ℕ(cWO-rel(R) (f x))} (↓∃m:ℕ(cWObar() alpha))) 
    supposing ∀a,b,c:T.  (R[a;b]  R[b;c]  R[a;c]) 
  supposing T


Proof




Definitions occuring in Statement :  cWObar: cWObar() cWO-rel: cWO-rel(R) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q unit: Unit set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q all: x:A. B[x] cWO-rel: cWO-rel(R) cWObar: cWObar() squash: T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top true: True cand: c∧ B isl: isl(x) isr: isr(x) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff guard: {T} sq_stable: SqStable(P) nat_plus: + less_than: a < b sq_type: SQType(T) outl: outl(x)
Lemmas referenced :  set_wf nat_wf unit_wf2 all_wf cWO-rel_wf subtype_rel_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self squash_wf exists_wf not_wf le_wf equal_wf less_than_wf assert_wf isr_wf subtract_wf decidable__le not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__exists_int_seg decidable__and2 decidable__lt decidable__assert isl_wf true_wf add-member-int_seg2 le-add-cancel2 and_wf not-lt-2 add-subtract-cancel outl_wf primrec-wf2 add-mul-special zero-mul sq_stable__and sq_stable__le sq_stable__less_than member-less_than add-is-int-iff int_subtype_base le_reflexive one-mul two-mul mul-distributes-right minus-zero omega-shadow mul-distributes mul-associates nat_properties le-add-cancel-alt le_weakening2 subtype_base_sq set_subtype_base decidable__int_equal not-equal-2 less_than_transitivity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution sqequalRule hypothesis imageElimination imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination functionEquality unionEquality lambdaEquality applyEquality natural_numberEquality setElimination rename because_Cache independent_isectElimination independent_pairFormation dependent_set_memberEquality productElimination dependent_functionElimination setEquality isect_memberEquality equalityTransitivity equalitySymmetry cumulativity universeEquality unionElimination independent_functionElimination addEquality productEquality functionExtensionality voidElimination voidEquality minusEquality intEquality instantiate dependent_pairFormation multiplyEquality baseApply closedConclusion addLevel levelHypothesis hyp_replacement inlEquality applyLambdaEquality promote_hyp

Latex:
\mforall{}[T:Type]
    \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
        (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}m:\mBbbN{}.  \mexists{}n:\mBbbN{}m.  (\mneg{}R[f  n;f  m])))
        {}\mRightarrow{}  (\mforall{}alpha:\{f:\mBbbN{}  {}\mrightarrow{}  (T?)|  \mforall{}x:\mBbbN{}.  (cWO-rel(R)  x  f  (f  x))\}  .  (\mdownarrow{}\mexists{}m:\mBbbN{}.  (cWObar()  m  alpha))) 
        supposing  \mforall{}a,b,c:T.    (R[a;b]  {}\mRightarrow{}  R[b;c]  {}\mRightarrow{}  R[a;c]) 
    supposing  T



Date html generated: 2019_06_20-AM-11_29_36
Last ObjectModification: 2018_08_21-PM-01_53_39

Theory : bar-induction


Home Index