Nuprl Lemma : cWO-rel_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (cWO-rel(R) ∈ n:ℕ ⟶ (ℕn ⟶ (T?)) ⟶ (T?) ⟶ ℙ)


Proof




Definitions occuring in Statement :  cWO-rel: cWO-rel(R) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cWO-rel: cWO-rel(R) implies:  Q prop: and: P ∧ Q nat: int_seg: {i..j-} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  less_than_wf assert_wf isl_wf unit_wf2 subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt and_wf le_wf outl_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality functionEquality productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis cumulativity applyEquality productElimination dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination lambdaFormation voidElimination independent_functionElimination independent_isectElimination addEquality because_Cache minusEquality universeEquality unionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (cWO-rel(R)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  (T?))  {}\mrightarrow{}  (T?)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_52_09
Last ObjectModification: 2015_12_26-AM-10_17_05

Theory : bar-induction


Home Index