Step
*
2
2
of Lemma
descending-chain-barred-implies-wellfounded
1. [T] : Type
2. [<] : T ⟶ T ⟶ ℙ
3. [B] : T ⟶ T ⟶ ℙ
4. ∀x,y,z:T. ((x < y)
⇒ (y < z)
⇒ (x < z))
5. ∀x,y:T. Dec(x B y)
6. ∀x,y:T. ((x B y)
⇒ (¬(x < y)))
7. ∀f:ℕ ⟶ T. (↓∃j:ℕ. ∃i:ℕj. ((f j) B (f i)))
8. [P] : T ⟶ ℙ
9. ∀j:T. ((∀k:T. ((k < j)
⇒ P[k]))
⇒ P[j])
10. n : ℕ
11. s : ℕn ⟶ T
12. ∀t:T. ∀m:ℕ. ∀s':ℕm ⟶ T.
(((n + 1) ≤ m)
⇒ (∀i:ℕn + 1. ((s' i) = (s++t i) ∈ T))
⇒ (∀j:ℕm. ∀i:ℕj. ((s' j) < (s' i)))
⇒ 0 < m
⇒ P[s' (m - 1)])
13. m : ℕ
14. s' : ℕm ⟶ T
15. n ≤ m
16. ∀i:ℕn. ((s' i) = (s i) ∈ T)
17. ∀j:ℕm. ∀i:ℕj. ((s' j) < (s' i))
18. 0 < m
19. k : T
20. k < (s' (m - 1))
21. P[s++k ((n + 1) - 1)]
⊢ P[k]
BY
{ (NthHypEq (-1) THEN EqCD THEN Auto THEN RepUR ``seq-adjoin seq-append`` 0 THEN RepeatFor 2 (AutoSplit))⋅ }
Latex:
Latex:
1. [T] : Type
2. [<] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. [B] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
4. \mforall{}x,y,z:T. ((x < y) {}\mRightarrow{} (y < z) {}\mRightarrow{} (x < z))
5. \mforall{}x,y:T. Dec(x B y)
6. \mforall{}x,y:T. ((x B y) {}\mRightarrow{} (\mneg{}(x < y)))
7. \mforall{}f:\mBbbN{} {}\mrightarrow{} T. (\mdownarrow{}\mexists{}j:\mBbbN{}. \mexists{}i:\mBbbN{}j. ((f j) B (f i)))
8. [P] : T {}\mrightarrow{} \mBbbP{}
9. \mforall{}j:T. ((\mforall{}k:T. ((k < j) {}\mRightarrow{} P[k])) {}\mRightarrow{} P[j])
10. n : \mBbbN{}
11. s : \mBbbN{}n {}\mrightarrow{} T
12. \mforall{}t:T. \mforall{}m:\mBbbN{}. \mforall{}s':\mBbbN{}m {}\mrightarrow{} T.
(((n + 1) \mleq{} m)
{}\mRightarrow{} (\mforall{}i:\mBbbN{}n + 1. ((s' i) = (s++t i)))
{}\mRightarrow{} (\mforall{}j:\mBbbN{}m. \mforall{}i:\mBbbN{}j. ((s' j) < (s' i)))
{}\mRightarrow{} 0 < m
{}\mRightarrow{} P[s' (m - 1)])
13. m : \mBbbN{}
14. s' : \mBbbN{}m {}\mrightarrow{} T
15. n \mleq{} m
16. \mforall{}i:\mBbbN{}n. ((s' i) = (s i))
17. \mforall{}j:\mBbbN{}m. \mforall{}i:\mBbbN{}j. ((s' j) < (s' i))
18. 0 < m
19. k : T
20. k < (s' (m - 1))
21. P[s++k ((n + 1) - 1)]
\mvdash{} P[k]
By
Latex:
(NthHypEq (-1)
THEN EqCD
THEN Auto
THEN RepUR ``seq-adjoin seq-append`` 0
THEN RepeatFor 2 (AutoSplit))\mcdot{}
Home
Index