Nuprl Lemma : descending-chain-barred-implies-wellfounded
∀[T:Type]. ∀[<,B:T ⟶ T ⟶ ℙ].
  ((∀x,y,z:T.  ((x < y) 
⇒ (y < z) 
⇒ (x < z)))
  
⇒ (∀x,y:T.  Dec(x B y))
  
⇒ (∀x,y:T.  ((x B y) 
⇒ (¬(x < y))))
  
⇒ (∀f:ℕ ⟶ T. (↓∃j:ℕ. ∃i:ℕj. ((f j) B (f i))))
  
⇒ WellFnd{i}(T;x,y.x < y))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
label: ...$L... t
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
less_than: a < b
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
seq-append: seq-append(n;m;s1;s2)
, 
seq-adjoin: s++t
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_lambda: λ2x y.t[x; y]
, 
member: t ∈ T
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
less_than_irreflexivity, 
not-equal-2, 
le_antisymmetry_iff, 
decidable__int_equal, 
le-add-cancel2, 
assert_of_bnot, 
iff_weakening_uiff, 
bnot_wf, 
assert_wf, 
iff_transitivity, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
top_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
le_reflexive, 
sq_stable__le, 
iff_weakening_equal, 
decidable_wf, 
not_wf, 
int_seg_subtype_nat, 
squash_wf, 
seq-adjoin_wf, 
int_subtype_base, 
set_subtype_base, 
add-is-int-iff, 
decidable__exists_int_seg, 
le-add-cancel-alt, 
zero-mul, 
add-mul-special, 
not-lt-2, 
decidable__lt, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
less-iff-le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
nat_wf, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
not-le-2, 
false_wf, 
decidable__le, 
subtract_wf, 
less_than_transitivity1, 
equal_wf, 
all_wf, 
less_than_wf, 
le_wf, 
and_wf, 
le_weakening2, 
less_than_transitivity2, 
infix_ap_wf, 
int_seg_wf, 
exists_wf, 
basic_bar_induction
Rules used in proof : 
multiplyEquality, 
hyp_replacement, 
impliesFunctionality, 
promote_hyp, 
dependent_pairFormation, 
sqequalAxiom, 
lessCases, 
equalityElimination, 
equalitySymmetry, 
equalityTransitivity, 
imageMemberEquality, 
imageElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
intEquality, 
minusEquality, 
voidEquality, 
isect_memberEquality, 
addEquality, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
functionEquality, 
dependent_functionElimination, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
dependent_set_memberEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
cumulativity, 
instantiate, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[<,B:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y,z:T.    ((x  <  y)  {}\mRightarrow{}  (y  <  z)  {}\mRightarrow{}  (x  <  z)))
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  B  y))
    {}\mRightarrow{}  (\mforall{}x,y:T.    ((x  B  y)  {}\mRightarrow{}  (\mneg{}(x  <  y))))
    {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  ((f  j)  B  (f  i))))
    {}\mRightarrow{}  WellFnd\{i\}(T;x,y.x  <  y))
Date html generated:
2017_09_29-PM-05_47_54
Last ObjectModification:
2017_09_22-AM-08_34_20
Theory : bar-induction
Home
Index