Nuprl Lemma : basic_bar_induction

[T:Type]. ∀[R,A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ].
  ((∀n:ℕ. ∀s:ℕn ⟶ T.  Dec(R[n;s]))
   (∀n:ℕ. ∀s:ℕn ⟶ T.  (R[n;s]  A[n;s]))
   (∀n:ℕ. ∀s:ℕn ⟶ T.  ((∀t:T. A[n 1;s++t])  A[n;s]))
   (∀alpha:ℕ ⟶ T. (↓∃m:ℕR[m;alpha]))
   (∀x:Top. A[0;x]))


Proof




Definitions occuring in Statement :  seq-adjoin: s++t int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] top: Top prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T int_seg: {i..j-} false: False lelt: i ≤ j < k and: P ∧ Q guard: {T} uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A prop: squash: T subtype_rel: A ⊆B true: True iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) sq_stable: SqStable(P) subtract: m top: Top exists: x:A. B[x] seq-append: seq-append(n;m;s1;s2) bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  less_than_transitivity1 less_than_irreflexivity int_seg_wf bar_recursion_wf false_wf le_wf nat_wf subtype_rel-equal equal_wf iff_weakening_equal top_wf all_wf squash_wf exists_wf subtype_rel_dep_function int_seg_subtype_nat decidable__le not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel seq-adjoin_wf decidable_wf minus-zero seq-append_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int less_than_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot subtract_wf not-lt-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction cut functionExtensionality sqequalHypSubstitution setElimination thin productElimination hypothesis extract_by_obid isectElimination hypothesisEquality natural_numberEquality independent_isectElimination independent_functionElimination voidElimination because_Cache sqequalRule dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed functionEquality cumulativity applyEquality instantiate lambdaEquality addEquality dependent_functionElimination unionElimination isect_memberEquality voidEquality intEquality minusEquality universeEquality dependent_pairFormation hyp_replacement equalityElimination lessCases sqequalAxiom promote_hyp impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[R,A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    Dec(R[n;s]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    (R[n;s]  {}\mRightarrow{}  A[n;s]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    ((\mforall{}t:T.  A[n  +  1;s++t])  {}\mRightarrow{}  A[n;s]))
    {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}m:\mBbbN{}.  R[m;alpha]))
    {}\mRightarrow{}  (\mforall{}x:Top.  A[0;x]))



Date html generated: 2017_04_14-AM-07_27_19
Last ObjectModification: 2017_02_27-PM-02_56_36

Theory : bar-induction


Home Index