Nuprl Lemma : seq-append_wf

[T:Type]. ∀[n,m:ℕ]. ∀[s1:ℕn ⟶ T]. ∀[s2:ℕm ⟶ T].  (seq-append(n;m;s1;s2) ∈ ℕm ⟶ T)


Proof




Definitions occuring in Statement :  seq-append: seq-append(n;m;s1;s2) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-append: seq-append(n;m;s1;s2) int_seg: {i..j-} nat: less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top not: ¬A implies:  Q false: False prop: lelt: i ≤ j < k sq_stable: SqStable(P) uimplies: supposing a subtract: m le: A ≤ B all: x:A. B[x] uiff: uiff(P;Q) subtype_rel: A ⊆B nat_plus: + decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  less_than_wf int_seg_wf and_wf le_wf top_wf subtract_wf nat_wf sq_stable__and sq_stable__le sq_stable__less_than member-less_than squash_wf add-commutes minus-one-mul not-le-2 add_functionality_wrt_le le_reflexive minus-one-mul-top add-associates minus-zero add-zero one-mul zero-add add-swap add-mul-special zero-mul not-lt-2 two-mul mul-distributes-right omega-shadow mul-distributes mul-associates le-add-cancel less-iff-le minus-add mul-swap nat_properties decidable__le decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality sqequalHypSubstitution setElimination thin rename because_Cache hypothesis lessCases independent_pairFormation isectElimination baseClosed natural_numberEquality equalityTransitivity equalitySymmetry imageMemberEquality hypothesisEquality axiomSqEquality isect_memberEquality voidElimination voidEquality lambdaFormation imageElimination productElimination extract_by_obid independent_functionElimination applyEquality functionExtensionality dependent_set_memberEquality addEquality axiomEquality functionEquality universeEquality dependent_functionElimination independent_isectElimination multiplyEquality minusEquality intEquality unionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[s1:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[s2:\mBbbN{}m  {}\mrightarrow{}  T].    (seq-append(n;m;s1;s2)  \mmember{}  \mBbbN{}n  +  m  {}\mrightarrow{}  T)



Date html generated: 2019_06_20-AM-11_28_33
Last ObjectModification: 2018_08_20-PM-09_29_12

Theory : bar-induction


Home Index