Nuprl Lemma : seq-append_wf
∀[T:Type]. ∀[n,m:ℕ]. ∀[s1:ℕn ⟶ T]. ∀[s2:ℕm ⟶ T].  (seq-append(n;m;s1;s2) ∈ ℕn + m ⟶ T)
Proof
Definitions occuring in Statement : 
seq-append: seq-append(n;m;s1;s2)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
seq-append: seq-append(n;m;s1;s2)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
lelt: i ≤ j < k
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
less_than_wf, 
int_seg_wf, 
and_wf, 
le_wf, 
top_wf, 
subtract_wf, 
nat_wf, 
sq_stable__and, 
sq_stable__le, 
sq_stable__less_than, 
member-less_than, 
squash_wf, 
add-commutes, 
minus-one-mul, 
not-le-2, 
add_functionality_wrt_le, 
le_reflexive, 
minus-one-mul-top, 
add-associates, 
minus-zero, 
add-zero, 
one-mul, 
zero-add, 
add-swap, 
add-mul-special, 
zero-mul, 
not-lt-2, 
two-mul, 
mul-distributes-right, 
omega-shadow, 
mul-distributes, 
mul-associates, 
le-add-cancel, 
less-iff-le, 
minus-add, 
mul-swap, 
nat_properties, 
decidable__le, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
because_Cache, 
hypothesis, 
lessCases, 
independent_pairFormation, 
isectElimination, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
hypothesisEquality, 
axiomSqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
extract_by_obid, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
addEquality, 
axiomEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_isectElimination, 
multiplyEquality, 
minusEquality, 
intEquality, 
unionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[s1:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[s2:\mBbbN{}m  {}\mrightarrow{}  T].    (seq-append(n;m;s1;s2)  \mmember{}  \mBbbN{}n  +  m  {}\mrightarrow{}  T)
Date html generated:
2019_06_20-AM-11_28_33
Last ObjectModification:
2018_08_20-PM-09_29_12
Theory : bar-induction
Home
Index