Step
*
3
of Lemma
simple_general_fan_theorem
1. [T] : Type
2. ∀K:T ⟶ ℕ. (∃B:ℕ [(∀t:T. ((K t) ≤ B))])
3. [X] : n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ
4. ∀f:ℕ ⟶ T. (↓∃n:ℕ. X[n;f])
5. ∀n:ℕ. ∀s:ℕn ⟶ T. Dec(X[n;s])
6. ∀x:Top. (∃k:ℕ [(∀f:ℕ ⟶ T. ∃m:ℕk. X[0 + m;seq-append(0;m;x;f)])])
⊢ ∃k:ℕ [(∀f:ℕ ⟶ T. ∃n:ℕk. X[n;f])]
BY
{ ((InstHyp [⌜⊥⌝] (-1)⋅ THENA Auto) THEN RepeatFor 3 (ParallelLast) THEN (NthHypEq (-1) THEN EqCD) THEN Auto) }
1
.....subterm..... T:t
2:n
1. T : Type
2. ∀K:T ⟶ ℕ. (∃B:ℕ [(∀t:T. ((K t) ≤ B))])
3. X : n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ
4. ∀f:ℕ ⟶ T. (↓∃n:ℕ. X[n;f])
5. ∀n:ℕ. ∀s:ℕn ⟶ T. Dec(X[n;s])
6. ∀x:Top. (∃k:ℕ [(∀f:ℕ ⟶ T. ∃m:ℕk. X[0 + m;seq-append(0;m;x;f)])])
7. k : ℕ
8. ∀f:ℕ ⟶ T. ∃m:ℕk. X[0 + m;seq-append(0;m;⊥;f)]
9. f : ℕ ⟶ T
10. m : ℕk
11. X[0 + m;seq-append(0;m;⊥;f)]
⊢ f = seq-append(0;m;⊥;f) ∈ (ℕm ⟶ T)
Latex:
Latex:
1. [T] : Type
2. \mforall{}K:T {}\mrightarrow{} \mBbbN{}. (\mexists{}B:\mBbbN{} [(\mforall{}t:T. ((K t) \mleq{} B))])
3. [X] : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} \mBbbP{}
4. \mforall{}f:\mBbbN{} {}\mrightarrow{} T. (\mdownarrow{}\mexists{}n:\mBbbN{}. X[n;f])
5. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} T. Dec(X[n;s])
6. \mforall{}x:Top. (\mexists{}k:\mBbbN{} [(\mforall{}f:\mBbbN{} {}\mrightarrow{} T. \mexists{}m:\mBbbN{}k. X[0 + m;seq-append(0;m;x;f)])])
\mvdash{} \mexists{}k:\mBbbN{} [(\mforall{}f:\mBbbN{} {}\mrightarrow{} T. \mexists{}n:\mBbbN{}k. X[n;f])]
By
Latex:
((InstHyp [\mkleeneopen{}\mbot{}\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN RepeatFor 3 (ParallelLast)
THEN (NthHypEq (-1) THEN EqCD)
THEN Auto)
Home
Index