Step
*
of Lemma
simple_more_general_fan_theorem-ext
∀[T:ℕ ⟶ Type]
(∀i:ℕ. Bounded(T[i]))
⇒ (∀[X:n:ℕ ⟶ (i:ℕn ⟶ T[i]) ⟶ ℙ]
(∀n:ℕ. ∀s:i:ℕn ⟶ T[i]. Dec(X[n;s]))
⇒ (∃k:ℕ [(∀f:i:ℕ ⟶ T[i]. ∃n:ℕk. X[n;f])])
supposing ∀f:i:ℕ ⟶ T[i]. (↓∃n:ℕ. X[n;f]))
supposing ∀i:ℕ. T[i]
BY
{ Extract of Obid: simple_more_general_fan_theorem
not unfolding pi1 int_seg_decide bar_recursion
finishing with (Unfold `genFAN` 0
THEN RepeatFor 4 (EqCD)
THEN Try (Trivial)
THEN Try (Fold `bottom` 0)
THEN SqReasoning)
normalizes to:
λmax,d. genFAN(max;d) }
Latex:
Latex:
\mforall{}[T:\mBbbN{} {}\mrightarrow{} Type]
(\mforall{}i:\mBbbN{}. Bounded(T[i]))
{}\mRightarrow{} (\mforall{}[X:n:\mBbbN{} {}\mrightarrow{} (i:\mBbbN{}n {}\mrightarrow{} T[i]) {}\mrightarrow{} \mBbbP{}]
(\mforall{}n:\mBbbN{}. \mforall{}s:i:\mBbbN{}n {}\mrightarrow{} T[i]. Dec(X[n;s])) {}\mRightarrow{} (\mexists{}k:\mBbbN{} [(\mforall{}f:i:\mBbbN{} {}\mrightarrow{} T[i]. \mexists{}n:\mBbbN{}k. X[n;f])])
supposing \mforall{}f:i:\mBbbN{} {}\mrightarrow{} T[i]. (\mdownarrow{}\mexists{}n:\mBbbN{}. X[n;f]))
supposing \mforall{}i:\mBbbN{}. T[i]
By
Latex:
Extract of Obid: simple\_more\_general\_fan\_theorem
not unfolding pi1 int\_seg\_decide bar\_recursion
finishing with (Unfold `genFAN` 0
THEN RepeatFor 4 (EqCD)
THEN Try (Trivial)
THEN Try (Fold `bottom` 0)
THEN SqReasoning)
normalizes to:
\mlambda{}max,d. genFAN(max;d)
Home
Index