Nuprl Lemma : simple_more_general_fan_theorem-ext
∀[T:ℕ ⟶ Type]
  (∀i:ℕ. Bounded(T[i]))
  
⇒ (∀[X:n:ℕ ⟶ (i:ℕn ⟶ T[i]) ⟶ ℙ]
        (∀n:ℕ. ∀s:i:ℕn ⟶ T[i].  Dec(X[n;s])) 
⇒ (∃k:ℕ [(∀f:i:ℕ ⟶ T[i]. ∃n:ℕk. X[n;f])]) 
        supposing ∀f:i:ℕ ⟶ T[i]. (↓∃n:ℕ. X[n;f])) 
  supposing ∀i:ℕ. T[i]
Proof
Definitions occuring in Statement : 
bounded-type: Bounded(T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
decidable__false, 
decidable__implies, 
decidable__not, 
decidable__exists_int_seg, 
any: any x
, 
decidable__int_equal, 
decidable__all_int_seg, 
basic_bar_induction, 
simple_more_general_fan_theorem, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
squash: ↓T
, 
true: True
, 
top: Top
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
has-value: (a)↓
, 
genFAN: genFAN(max;d)
, 
ifthenelse: if b then t else f fi 
, 
seq-normalize: seq-normalize(n;s)
, 
bottom: ⊥
, 
pi2: snd(t)
, 
project-seq: project-seq(s)
, 
member: t ∈ T
Lemmas referenced : 
lifting-strict-int_eq, 
lifting-strict-callbyvalue, 
strict4-decide, 
lifting-strict-decide, 
int-value-type, 
value-type-has-value, 
exception-not-value, 
istype-assert, 
istype-less_than, 
assert_of_bnot, 
iff_weakening_uiff, 
less_than_wf, 
not_wf, 
bnot_wf, 
assert_wf, 
iff_transitivity, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
bottom-sqle, 
strictness-apply, 
istype-void, 
istype-top, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
bottom_diverge, 
simple_more_general_fan_theorem, 
decidable__false, 
decidable__implies, 
decidable__not, 
decidable__exists_int_seg, 
decidable__int_equal, 
decidable__all_int_seg, 
basic_bar_induction
Rules used in proof : 
intEquality, 
lessExceptionCases, 
universeIsType, 
functionIsType, 
cumulativity, 
dependent_functionElimination, 
promote_hyp, 
equalityIstype, 
dependent_pairFormation_alt, 
imageElimination, 
imageMemberEquality, 
natural_numberEquality, 
independent_pairFormation, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
axiomSqEquality, 
isect_memberFormation_alt, 
lessCases, 
independent_isectElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
productElimination, 
callbyvalueLess, 
because_Cache, 
isectElimination, 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqleReflexivity, 
exceptionSqequal, 
axiomSqleEquality, 
callbyvalueExceptionCases, 
voidElimination, 
independent_functionElimination, 
callbyvalueReduce, 
callbyvalueCallbyvalue, 
divergentSqle, 
sqequalSqle, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}[T:\mBbbN{}  {}\mrightarrow{}  Type]
    (\mforall{}i:\mBbbN{}.  Bounded(T[i]))
    {}\mRightarrow{}  (\mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (i:\mBbbN{}n  {}\mrightarrow{}  T[i])  {}\mrightarrow{}  \mBbbP{}]
                (\mforall{}n:\mBbbN{}.  \mforall{}s:i:\mBbbN{}n  {}\mrightarrow{}  T[i].    Dec(X[n;s]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}  [(\mforall{}f:i:\mBbbN{}  {}\mrightarrow{}  T[i].  \mexists{}n:\mBbbN{}k.  X[n;f])]) 
                supposing  \mforall{}f:i:\mBbbN{}  {}\mrightarrow{}  T[i].  (\mdownarrow{}\mexists{}n:\mBbbN{}.  X[n;f])) 
    supposing  \mforall{}i:\mBbbN{}.  T[i]
Date html generated:
2019_10_15-AM-10_20_19
Last ObjectModification:
2019_10_07-PM-04_40_56
Theory : bar-induction
Home
Index