Step
*
3
of Lemma
simple_more_general_fan_theorem
1. [T] : ℕ ⟶ Type
2. [%] : ∀i:ℕ. T[i]
3. ∀i:ℕ. ∀K:T[i] ⟶ ℕ. (∃B:ℕ [(∀t:T[i]. ((K t) ≤ B))])
4. [X] : n:ℕ ⟶ (i:ℕn ⟶ T[i]) ⟶ ℙ
5. ∀f:i:ℕ ⟶ T[i]. (↓∃n:ℕ. X[n;f])
6. ∀n:ℕ. ∀s:i:ℕn ⟶ T[i]. Dec(X[n;s])
7. n : ℕ
8. s : ℕn ⟶ (i:ℕ × T[i])
9. ∀t:i:ℕ × T[i]
∃k:ℕ [(∀f:ℕ ⟶ (i:ℕ × T[i])
∃m:ℕk. X[(n + 1) + m;project-seq(seq-append(n + 1;m;s++t;f))]
supposing ∀i:ℕ. ((fst((f i))) = (i + n + 1) ∈ ℤ))]
supposing ∀i:ℕn + 1. ((fst((s++t i))) = i ∈ ℤ)
10. ∀i:ℕn. ((fst((s i))) = i ∈ ℤ)
⊢ ∃k:ℕ [(∀f:ℕ ⟶ (i:ℕ × T[i])
∃m:ℕk. X[n + m;project-seq(seq-append(n;m;s;f))] supposing ∀i:ℕ. ((fst((f i))) = (i + n) ∈ ℤ))]
BY
{ (Assert ∀t:T[n]
(∃k:ℕ [(∀f:ℕ ⟶ (i:ℕ × T[i]). ∃m:ℕk. X[(n + 1) + m;project-seq(seq-append(n + 1;m;s++<n, t>;f))] supposing ∀\000Ci:ℕ. ((fst((f i))) = (i + n + 1) ∈ ℤ))]) BY
((D 0 THENA Auto)
THEN (BHyp -3 THEN Auto)
THEN ((Decide ⌜i < n⌝⋅ THENA Auto) THENL [Id; (Subst' i ~ n 0 THENA Auto)])
THEN RepUR ``seq-adjoin seq-append`` 0
THEN OReduce 0
THEN Auto)) }
1
1. [T] : ℕ ⟶ Type
2. [%] : ∀i:ℕ. T[i]
3. ∀i:ℕ. ∀K:T[i] ⟶ ℕ. (∃B:ℕ [(∀t:T[i]. ((K t) ≤ B))])
4. [X] : n:ℕ ⟶ (i:ℕn ⟶ T[i]) ⟶ ℙ
5. ∀f:i:ℕ ⟶ T[i]. (↓∃n:ℕ. X[n;f])
6. ∀n:ℕ. ∀s:i:ℕn ⟶ T[i]. Dec(X[n;s])
7. n : ℕ
8. s : ℕn ⟶ (i:ℕ × T[i])
9. ∀t:i:ℕ × T[i]
∃k:ℕ [(∀f:ℕ ⟶ (i:ℕ × T[i])
∃m:ℕk. X[(n + 1) + m;project-seq(seq-append(n + 1;m;s++t;f))]
supposing ∀i:ℕ. ((fst((f i))) = (i + n + 1) ∈ ℤ))]
supposing ∀i:ℕn + 1. ((fst((s++t i))) = i ∈ ℤ)
10. ∀i:ℕn. ((fst((s i))) = i ∈ ℤ)
11. ∀t:T[n]. (∃k:ℕ [(∀f:ℕ ⟶ (i:ℕ × T[i]). ∃m:ℕk. X[(n + 1) + m;project-seq(seq-append(n + 1;m;s++<n, t>;f))] supposing \000C∀i:ℕ. ((fst((f i))) = (i + n + 1) ∈ ℤ))])
⊢ ∃k:ℕ [(∀f:ℕ ⟶ (i:ℕ × T[i])
∃m:ℕk. X[n + m;project-seq(seq-append(n;m;s;f))] supposing ∀i:ℕ. ((fst((f i))) = (i + n) ∈ ℤ))]
Latex:
Latex:
1. [T] : \mBbbN{} {}\mrightarrow{} Type
2. [\%] : \mforall{}i:\mBbbN{}. T[i]
3. \mforall{}i:\mBbbN{}. \mforall{}K:T[i] {}\mrightarrow{} \mBbbN{}. (\mexists{}B:\mBbbN{} [(\mforall{}t:T[i]. ((K t) \mleq{} B))])
4. [X] : n:\mBbbN{} {}\mrightarrow{} (i:\mBbbN{}n {}\mrightarrow{} T[i]) {}\mrightarrow{} \mBbbP{}
5. \mforall{}f:i:\mBbbN{} {}\mrightarrow{} T[i]. (\mdownarrow{}\mexists{}n:\mBbbN{}. X[n;f])
6. \mforall{}n:\mBbbN{}. \mforall{}s:i:\mBbbN{}n {}\mrightarrow{} T[i]. Dec(X[n;s])
7. n : \mBbbN{}
8. s : \mBbbN{}n {}\mrightarrow{} (i:\mBbbN{} \mtimes{} T[i])
9. \mforall{}t:i:\mBbbN{} \mtimes{} T[i]
\mexists{}k:\mBbbN{} [(\mforall{}f:\mBbbN{} {}\mrightarrow{} (i:\mBbbN{} \mtimes{} T[i])
\mexists{}m:\mBbbN{}k. X[(n + 1) + m;project-seq(seq-append(n + 1;m;s++t;f))]
supposing \mforall{}i:\mBbbN{}. ((fst((f i))) = (i + n + 1)))]
supposing \mforall{}i:\mBbbN{}n + 1. ((fst((s++t i))) = i)
10. \mforall{}i:\mBbbN{}n. ((fst((s i))) = i)
\mvdash{} \mexists{}k:\mBbbN{} [(\mforall{}f:\mBbbN{} {}\mrightarrow{} (i:\mBbbN{} \mtimes{} T[i])
\mexists{}m:\mBbbN{}k. X[n + m;project-seq(seq-append(n;m;s;f))]
supposing \mforall{}i:\mBbbN{}. ((fst((f i))) = (i + n)))]
By
Latex:
(Assert \mforall{}t:T[n]
(\mexists{}k:\mBbbN{} [(\mforall{}f:\mBbbN{} {}\mrightarrow{} (i:\mBbbN{} \mtimes{} T[i])
\mexists{}m:\mBbbN{}k. X[(n + 1) + m;project-seq(seq-append(n + 1;m;s++<n, t>f))] supposing \mforall{}i:\000C\mBbbN{}. ((fst((f i))) = (i + n + 1)))]) BY
((D 0 THENA Auto)
THEN (BHyp -3 THEN Auto)
THEN ((Decide \mkleeneopen{}i < n\mkleeneclose{}\mcdot{} THENA Auto) THENL [Id; (Subst' i \msim{} n 0 THENA Auto)])
THEN RepUR ``seq-adjoin seq-append`` 0
THEN OReduce 0
THEN Auto))
Home
Index